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Abstract

Modern application layer HTTP DDoS attacks em-

ploy complex techniques that make them difficult

to detect. So modern DDoS defense approaches

are also based on sophisticated methods to classify

HTTP requests. Usually, these methods require ex-

haustive data on user activity from different layers

of protocol stack, mainly from network, transport

and application layers.

Moreover, a typical DDoS attack puts a huge

load onto a target Web cluster. That demands a

DDoS mitigation solution that delivers higher per-

formance and is able to significantly reduce the

load on defended back-end systems.

In this article we present Tempesta, a hybrid so-

lution that combines a caching HTTP server and

a firewall in one. It accelerates Web applications

much efficiently than traditional Web accelerators

and provides a high performance framework that

offers easy access to data from all protocol lay-

ers. That facilitates the development and use of

sophisticated DDoS classification and blocking al-

gorithms.

1 Introduction

Modern DDoS attacks elude detection by employ-

ing techniques like making slow requests [17],

sending random HTTP headers and URL val-

ues [16], requesting most expensive resources on

the victim site at a low rate (e.g., heavy search in

a database), putting periodic loads instead of a per-

sistent load [18], as well as by using many other

techniques. The most advanced attacks mimic flash

crowds by sending different requests at a normal
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rate from hundreds of thousands of machines, and

slowly activating their bots. Very sophisticated

classification algorithms that analyze traffic in net-

work, transport and application layers are required

to properly filter bots out. Development of these

classifiers is a challenging task, but it can be greatly

simplified by the use of a framework that provides

convenient access to all layers of network traf-

fic. Neither traditional firewalls nor caching Web

servers provide sufficient data for accurate traffic

analyzing: Web servers have access to application

layer only while firewalls can accurately operate on

network layer only.

In this paper we address the problem of provid-

ing all necessary hooks for classification and filter-

ing modules so that they can easily get access to all

necessary information to detect malicious network

clients and block them by using multi-layer fil-

ters (e.g., by particular IP address and some HTTP

header value at the same time). At the same time,

the system must be an active participant in TCP

sessions. That is required for proper SSL termi-

nation, content caching, and accurate TCP stream

assembling.

Proxy servers are active participants in TCP ses-

sions which makes them more accurate in data as-

sembly, but at the cost of a lower performance. At

the same time, a DDoS attack puts a heavy load

on the defense system itself, so the performance

of a DDoS mitigation system is another big chal-

lenge. Moreover, a classification algorithm usu-

ally needs to analyze at least several packets from

a client to understand whether it’s a DDoS bot or

not, so harmful traffic may pass through the sys-

tem at least at the beginning of an attack. Also, the

load caused by a DDoS attack can have sawtooth-

like characteristics which may cause periodic pass-

ing of malicious traffic to a protected back-end sys-



tem. Hence, a defense system must be very power-

ful and able to cope with huge traffic spikes while

its classifiers analyze network traffic. Robustness

of Web acceleration under a huge load caused by a

DDoS attack is the other problem addressed by the

paper.

Moving HTTP server to the kernel space of an

operating system is a very efficient way of im-

proving its performance, but it was considered a

bad practice [2]. However, we argue that there is

a niche for specific type of applications that lies

between firewalls that traditionally work in kernel

space, and Web-accelerators that traditionally are

user space applications. The niche is not limited to

DDoS mitigation solutions, but also includes Web

Application Firewalls [21].

This paper presents Tempesta, a high perfor-

mance Linux kernel framework for classification

of HTTP requests, efficient blocking of multiple IP

addresses, and robust Web site acceleration in nor-

mal and DDoS conditions. We also introduce Syn-

chronous Socket library for Linux kernel that offers

better and more stable performance than traditional

Berkeley Sockets, or even kernel sockets. Tem-

pesta uses Synchronous Sockets in a very similar

fashion as common user space servers use Berke-

ley Sockets to send and receive data over TCP/IP.

2 Motivation and Related Work

Many researchers proposed efficient methods for

application layer DDoS attack detection [1] [3] [4]

[12] [20]. However, such classifying systems need

access to all network layers. Thus, to build a pow-

erful DDoS prevention system that can analyze net-

work traffic and block DDoS attacks using various

heuristics, an appropriate platform is required. It

needs to provide access to all protocol layers and

have the ability to modify traffic in all layers.

Intrusion detection systems like Snort [25],

based on Deep Packet Inspection (DPI) [37] [38],

analyze traffic in all layers of protocol stack. How-

ever, the system does not participate in TCP con-

nection handling such as connection establish-

ing or termination, flow control, etc. Without

that it doesn’t have complete information about

TCP control block (TCB) on each side of a con-

nection. Thus it is prone to inaccurate TCP/IP

packets assembly, especially in a hostile environ-

ment [24] [23]. On the opposite side are proxy

servers. They are active participants in TCP ses-

sions which makes them more accurate in data as-

sembly.

Apache mod evasive [11], Nginx HTTP request

rate limit [9] and Nginx simultaneous connections

limit [10] modules provide simple DDoS protec-

tion as part of a caching HTTP server. DDoS-

Shield [3] is also integrated into Apache HTTP

server, but implements a more advanced technique

for classification of HTTP requests and sessions.

In all these solutions the server must accept a client

connection, then read and parse an HTTP request.

Only then it might be able to determine that the

client exceeded one of the limits, and respond with

an error code. However HTTP servers are designed

to provide application service rather than filter in-

tensive traffic like firewalls. These solutions have

very limited performance capabilities and are not

suitable to filter DDoS attacks.

Sendfile(2) and splice(2) system calls make it

possible for HTTP accelerators to avoid copying

on data sending. However there is still no reliable

zero copy mechanism for network input. Moreover,

DDoS attacks in most cases are characterized by

huge amount of small HTTP requests making zero-

copy, which requires two system calls, quite ineffi-

cient.

All modern user space HTTP servers use Berke-

ley Socket API that has two performance draw-

backs in context of an application layer DDoS at-

tack. The first one is an overly detailed interface.

For example, if we want to limit client connections

at certain rate, then we need to accept(2) a con-

nection, call getpeername(2) to get IP address of

the client, look it up in our filter data structure,

and finally close(2) the connection. I.e. there are

6 context switches to block one connection from

one bot. Brecht et al. [5] demonstrated that careful

optimization of strategy for accepting new connec-

tions leads to significant web server performance

improvements. However, as we will see in sec-

tion 5.1, such optimizations don’t solve the issue

of context switches completely. The second draw-

back is that reading from socket in user space is an

operation that is asynchronous to arrival of a TCP

segment, which aggravates the problem of context

switches. We will discuss this case in the following

section 3.

RouteBricks [32] (based on Click [39]) and Net-

Slices [33] use system optimizations that are com-

mon these days. Using a NUMA system with the

number of cores that matches the number of net-



work adapter queues. Setting the IRQ affinity to

pin each network adapter queue to a separate CPU

core. Switching on GRO and GSO that are com-

mon in modern adapters and supported by Linux

kernel. All of these are used in Tempesta as well.

Sandstorm [34], MegaPipe [35] and mTCP [36]

replace Berkeley Socket API by their own opti-

mized APIs. Sandstorm and mTCP implement

tiny user-space TCP/IP stacks (without firewall,

packet scheduling and several other features) that

are faster than standard Linux TCP/IP stack, but

still suffer from copying. MegaPipe batches system

calls and replaces heavy Linux sockets with their

own lighter implementation. These optimizations

make user space TCP servers capable of handling

much higher traffic volumes. However, user space

solutions are still slow due to context switches,

copying and uncontrolled preemption ([40] shows

that RCU and read-write locks are much faster if

preemption is disabled).

To address the problems of copying and context

switches, a few in-kernel Web servers were devel-

oped: OpenKeta [8] for FreeBSD and TUX [6] and

kHTTPd [7] for Linux. Joubert et al. proposed

AFPA [2], which differs from other kernel based

servers in that it moves a bunch of operations (like

a firewall) to deferred interrupt context rather than

processes requests in a separate kernel thread.

Our approach is similar to AFPA in that it also

embeds an HTTP server into the operating system

TCP/IP stack. However, AFPA is basically a com-

mon HTTP server which has been moved to kernel

just to get more performance. Meantime, Tempesta

emphasises advanced filtering abilities, what is tra-

ditionally done by kernel-based firewalls. Also

the whole server logic is designed to efficiently

handle extreme loads like DDoS attacks and drop

malicious traffic as early as possible. For exam-

ple, while AFPA uses slow filesystem operations

to serve cached content, we use special lightweight

embedded in-memory database, so all jobs are very

fast and our server can work fully in softirq.

It is not sufficient to build just a fast HTTP

accelerator. Sometimes front-end servers serve

large static or cached content (e.g., photo-hosting)

that does not fit into RAM, or execute lightweight

dynamic content via FastCGI. Since application

layer DDoS attacks frequently target the most com-

putationally expensive resources, disk access or

complex application logic may force the server

to its knees under DDoS. Thus to be resistant to

application-layer DDoS front-end server must be

designed in special way. We should neither ac-

cept connections from DDoS bots nor process re-

quests from them or send responses. It is better

to quickly drop any traffic as soon as bots are de-

tected and their addresses are determined. Voigt et

al. [12] have shown the efficiency of a kernel based

approach and an ”early discard” principle of drop-

ping invalid packets before they have consumed a

lot of system resources.

One of the simplest ways of dealing with DDoS

is using a log monitor [15] [14] to dynamically

analyze Web server logs and add firewall rules to

block clients by requests rate limit or by specific

URL access. Filtering is cheap in this solution,

but generating the filtering rules isn’t. If DDoS

botnet activates all its zombies at once, then vic-

tim host suffers from overloading, but it still needs

to generate and upload thousands of filtering rules.

In these conditions parsing logs and executing new

processes to add firewall rules make the attack even

worse.

Tight integration of Postfix mail server with

Linux firewall and maintaining of the database of

spam bots was proposed in LKML [13], so Postfix

can dynamically block hundreds of thousands of

spamming addresses without computationally ex-

pensive logs parsing.

Linux Iptables firewall provides limit, hashlimit,

connlimit, set and string matching modules. They

can efficiently block DDoS attacks at the network

layer by limiting the number of parallel connec-

tions, specific signature or client packet rate. As

opposed to Nginx’s HTTP requests rate limit mod-

ule, Iptables’s rate limiting modules operate on IP

packets instead of HTTP requests. That makes traf-

fic analyzing less accurate since client HTTP re-

quests may vary in size and contain various number

of packets.

As a result, there are two obstacles to efficient

DDoS filtering. The first is that low level tools like

firewalls cannot reliably assemble transport and ap-

plication layer messages and can operate only at

the network layer. To be able to classify traffic

at higher layers we need to recreate the operating

system TCP and application protocols logic, which

leads us to double processing of network traffic.

Similarly, application servers don’t have access to

lower layers and can classify traffic only at the ap-

plication layer. The second issue is that if an appli-

cation server is responsible for traffic classification,



then it must issue thousands of blocking rules for

the firewall, and that is costly.

3 Synchronous Sockets

As described in previous sections, traditional

Berkeley socket API introduces two significant

problems: data copying and context switches. To

cope with the obstacles kernel sockets can be used.

One of the examples, which can be found in Linux

kernel tree, is Oracle Reliable Datagram Sockets

(RDS) [26]. Like AFPA [2] RDS uses standard

Linux kernel TCP socket callbacks to handle TCP

connections. The hooks are called by TCP code

when a socket changes its state, new data arrives

to the socket, there is space in the write buffer,

and in few other cases. RDS tries to do as much

work as possible in bottom half, but it still uses

standard Linux kernel accept() TCP callback that

may sleep, so it must accept actual connections in

a work queue (i.e. in a separate kernel thread). An-

other example of kernel sockets, Ceph [27], also

reads data in a work queue.

Reading from a socket in a context other than

deferred interrupt context (either in user space or

in kernel thread) is asynchronous to arrival of TCP

segments. Let’s consider an example shown in Fig-

ure 1. An operating system receives three pack-

ets p0, p1 and p2 sequentially and places them in

queues of three different sockets. When a packet is

placed in a socket queue, a corresponding process

is woken up (suppose that epoll(7) is used). Since

the packet p2 was received last, it is likely that it

is in the CPU cache (assuming either Direct Cache

Access is used or the OS had read the packet head-

ers), but p0 can be evicted by successive packets

p1 and p2. However, there is no guarantee which

process (or thread) reads a packet first and which

particular packet will be read first. Thus, at high

packet rates application threads can read a packet

that was already evicted from the local CPU cache,

which leads to poor cache hit. Moreover, the user

space application and softirq (deferred interrupt),

which processed the packet, may work on different

CPU cores, which also leads to unnecessary cache

starvation. Linux offers Receive Flow Steering

(RFS) to direct application steer packets to the cor-

rect CPU with application locality in mind. How-

ever, softirq and application or kernel threads still

operate asynchronously, i.e. at different speeds, so

a thread may read a packet that may already have

been evicted by a packet read in the softirq. The

problem is more critical in modern high speed net-

works.

Socket

NIC

Socket

Kernel

Process 1

User space

Packet

Socket

Process 0

CPU0 CPU1
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Softirq

Figure 1: Reading from common sockets is asyn-

chronous

To solve the issue we developed Linux kernel

Synchronous Sockets library that is based on Linux

TCP socket callbacks and provides an easy to use

interface for socket reading, writing and multiplex-

ing. Opposite to RDS TCP processing, it works

completely in softirq context. Synchronous Sock-

ets are part of Tempesta distribution, but they were

developed as an independent Linux kernel loadable

module that exported a set of calls. Any kernel-

based application can use them for faster socket

operations. The module uses a number of standard

Linux routines (currently TCP only), so we patched

the kernel to get access to some not-exported func-

tions.

In kernel space we don’t have to operate with

sockets as with common file handles, so we im-

plemented some standard Linux functions in more

lightweight manner without operations with file de-

scriptors. Also, the API was designed with filtering

ability in mind, so we developed our own socket re-

ceiving function which does not call kfree skb(),

as standard tcp read sock() does it, and allows user

to manage skb buff s (sk buff, or socket buffer, is

standard Linux kernel packet descriptor) himself.

Currently Synchronous Sockets support TCP

protocol only. A user should define an applica-

tion protocol handle inherited from SsProto struc-



ture and set data handling callback to it using

ss proto push handler(). The protocol handle is

passed as an argument to socket callbacks. Syn-

chronous Sockets allow registration of the follow-

ing callbacks:

1. connection new() - called when a new connec-

tion is accepted;

2. connection drop() - called when TCP connec-

tion, associated with the socket, is dropped by

the peer;

3. connection recv() - process data received on

the socket;

4. put skb to msg() - add an sk buff to the cur-

rent connection message. We need this low-

level sk buff operation at connection (higher)

layer to provide zero-copy data transfers with

socket buffers reuse;

5. postpone skb() - postpone an skb into internal

protocol queue;

ss hooks register() registers the callbacks.

ss close() and ss send() functions actively close

and sends data through a socket, respectively.

Also ss tcp set listen() links protocol handle

to the listening socket, so we can have many

listening sockets simultaneously with each serving

a different protocol.

The following pseudo-code example demon-

strates the API usage (the real world example can

be found in the library distribution, see section 6):

/∗ I n h e r i t e d a p p l i c a t i o n l o g i c c l a s s . ∗ /

s t r u c t {
S s P r o t o p r o t o ;

/∗ some o t h e r members ∗ /

} m y pro to ;

s t r u c t s o c k e t ∗ l i s t e n s o c k ;

i n t my read ( vo id ∗ pro to , char ∗ da ta , i n t l e n )

{
/∗ Read a p p l i c a t i o n l e v e l da ta . ∗ /

}

i n t my conn new ( s t r u c t sock ∗ sock )

{
/∗ Handle a new TCP c o n n e c t i o n ∗ /

}

SsHooks s s o c k e t h o o k s = {
. c o n n e c t i o n n e w = my conn new ,

. c o n n e c t i o n r e c v = my read ,

} ;

i n t m y i n i t ( vo id )

{
/∗ R e g i s t e r TCP ( l a y e r 4) c a l l b a c k s . ∗ /

s s h o o k s r e g i s t e r (& s s o c k e t h o o k s ) ;

/∗ S e t TCP h a n d l e r s . ∗ /

s s t c p s e t l i s t e n ( l i s t e n s o c k −>sk ,

( S s P r o t o ∗)& m y pro to ) ;

}

4 Tempesta Architecture

The main goals of Tempesta project are:

1. Providing a framework with full access to net-

work, transport, session, presentation and ap-

plication layers for building efficient and intel-

ligent traffic classification, modification and

filtering systems;

2. Working as part of Linux TCP/IP stack to effi-

ciently handle short connections that are com-

mon in DDoS attacks;

3. Tight integration with native Linux security

and netfilter subsystems to manage dynamic

rules and efficiently classify and block ex-

tremely large botnets;

4. High performance HTTP sessions processing

with caching reverse-proxy functionality to

mitigate Web service overloading under huge

loads (including DDoS attacks);

5. Providing normalized HTTP messages to clas-

sification algorithms and sending normalized

client HTTP requests to back-end servers

to avoid different HTTP interpretation by

hosted analyzing algorithms and defended

Web servers.

Basically, Tempesta is a hybrid of a caching

HTTP server and a firewall with dynamic rule set.

It is implemented as a set of Linux kernel loadable

modules. Synchronous Sockets provide common

interface to TCP and higher layer protocols. Also,

small modifications of Linux kernel were done, so

now it provides more control over TCP sockets to

loadable kernel modules. All incoming packets are

processed in deferred interrupt context which im-

proves CPU cache hit on packet processing [2] and

allows dropping of unwanted packets and connec-

tions as early as possible to minimize resource us-

age.



Tempesta has modular architecture for better

flexibility. Following types of modules are sup-

ported:

• Traffic classification (analyzing) and statistics

gathering;

• Detection and handling stress (overloading) of

a local system or back-end Web servers (e.g.,

by integration with custom Nginx or Apache

modules, described in more details in sec-

tion 4.7);

• Filtering by using various techniques (silent

traffic dropping, connection resetting,

tarpit [22], sending HTTP error messages

etc.)

• HTTP request distribution across back-end

servers (round-robin, by Host or URL etc.);

• Generic modules for HTTP message process-

ing;

Even though Web Application Firewalls [21] are

out of the scope of this work, it is worth noting

that this kind of security applications can be imple-

mented in Tempesta environment since it provides

filtering functionality in combination with access

to HTTP request data.

4.1 Handling Packets

First, when a packet is retrieved, it goes into

operating system IP receive routine, ip rcv() or

ipv6 rcv(), where it is verified by our filter hooks

registered with Netfilter. If the packet passes

the IP filter it goes into TCP input routines,

tcp v4 rcv() or tcp v6 rcv(). TCP socket callbacks

are called much deeper in the TCP code, but Linux

provides security hooks for sockets (e.g., secu-

rity sock rcv skb()), that are called from the func-

tions, so we use the hooks to register our TCP

layer filtering and classification callbacks. Syn-

chronous Sockets handle higher level TCP ingress

and egress.

Tempesta network input and output subsystem

works fully in deferred interrupt context without

any helper threads. Incoming packets are parsed

as soon as they arrive to network interface and

while CPU caches are warm. HTTP cache resides

in main memory only, so there’s no disk IO (see

subsection 4.5) or other sleeping operations, so all

work on HTTP requests processing and sending re-

sponses can be done in the same softirq. Some of

the packets could be cloned using skb clone() call

(subsection 4.6 motivates this) and passed through

zero-copy interface to a user-mode daemon for

slow classification logic.

HTTP message (either request or response) may

consist of multiple packets. The packets are not

sent to back-end server until the request is fully

assembled and processed. Separate message seg-

ments are postponed in the session queue.

If an HTTP request can not be served from

cache, then the request is adjusted, passed to the

send queue of the socket connected to a back-end

server and a TCP send is initiated on the socket. All

of that occurs in the same softirq in which the last

piece of the request was received.

4.2 Handling Connections

Two types of connections are handled - back-

end connections with the farm of back-end Web

servers, and front-end connections with HTTP

clients. Sending and receiving packets as well as

connection establishing and closing in both types

of connections are handled in a similar manner

through Synchronous Sockets API.

Tempesta maintains a pool of persistent TCP

connections with back-end Web servers. Persis-

tence is based on standard HTTP Keep-Alive op-

tion. If a connection fails due to a timeout or con-

nection closing, then a Synchronous Sockets hook

is called. The hook calls a Tempesta callback that

establishes a new connection. Thus, the system

guarantees that there is always an active connec-

tion to back-end servers, so admissible client re-

quests won’t have to wait for connection to the Web

server.

Currently there is no HTTP request distribution

by URL or Host HTTP header values. The requests

are distributed across back-end servers in round-

robin fashion. The logic is implemented in a load-

able module, so the system can be extended by a

module that implements sophisticated routing and

load balancing algorithms.

The first time when a client connects to the

server, the system allocates a new TCP socket as

a normal Linux server, so SYN Cookies, TCP of-

floading and other TCP features are still applicable.

Tempesta provides connection establishing and

closing hooks, so classification modules can easily



keep track of connections.

Classifier modules observe the client connection

(see section 4.6) and decide if it is normal or mali-

cious. All normal connections are handled in stan-

dard Linux tcp hashinfo hash table, in which Linux

stores sockets with full identity. Classifiers can ini-

tiate tcp hashinfo shrinking (see section 4.6), so we

patched the Linux kernel to be able to use functions

operating on the hash from our loadable modules.

If a classifier decides that a connection is malicious,

the filter module is called to handle the connection

(e.g., just drop it).

Currently a malicious connection is just evicted

from the connections hash table and all data struc-

tures associated with it are silently freed (no TCP

FIN or RST segments are sent to the client). In the

end, a new filter rule is added for the client IP ad-

dress, so all subsequent packets from the client are

dropped by the filter module.

4.3 Generic Finite State Machine

(GFSM)

Traditional HTTP servers like Apache HTTP

Server or Nginx provide a set of hooks for different

HTTP processing phases (e.g., reading a client re-

quest, resource access check, generating an HTTP

response, etc.). If the server logic is considered a

finite state machine (FSM), then the phases are sim-

ply just states of the machine.

The problem with this simplistic approach is

that there is no way to interrupt an FSM in some

state, do some work on the processed request, and

get right back to the same, previously interrupted,

state. The problem arises in the context of requests

classification performed by an external server. One

such example is ICAP protocol (RFC 3507). Let’s

consider a simple scenario for ICAP:

• client sends POST request with an attached

file;

• HTTP server parses the request and passes it

to an ICAP server for analyzing, meantime it

continues processing other requests;

• ICAP server scans the file for viruses and re-

sponds to the HTTP server;

• HTTP server restores the request processing

procedure (executes scripts, sends the request

to backend server and so on) if the ICAP

server has decided that the file is malware-

free, or sends an error code to the client other-

wise.

However, ”It’s not an easy task” [31] to implement

such logic in modern HTTP servers.

HTTP state machine in Tempesta is im-

plemented using Generic Finite State Machine

(GFSM). Modules for ICAP, classification algo-

rithms training (see section 4.6), and even FastCGI

are also considered to be developed through GFSM

interfaces.

GFSM operation can be illustrated by the follow-

ing scenario:

1. HTTP is explicitly implemented as an FSM,

i.e. there is a single entry function that has a

switch statement over the HTTP states;

2. HTTP registers the entry function using a

GFSM call, so now the GFSM knows that

there is a FSM and there is an entry function

for it;

3. HTTP code uses connection layer callback to

say that connections for the specified listen-

ing socket must be linked with its FSM control

block;

4. when a new connection is accepted, then

the connection layer executes gfsm dispatch()

with the linked FSM control block as an ar-

gument. gfsm dispatch() passes the control

block pointer to the FSM entry point function;

5. FSM control blocks are organized in a stack,

so all required data for the current FSM oper-

ation (its current state, temporal data associ-

ated with currently processed message, infor-

mation about registered hooks and so on) is

placed on top of the stack. GFSM code is re-

sponsible for the stack management and call-

ing appropriate FSM handling functions;

6. when HTTP reads a request and is ready to

go forward it calls gfsm move() to move to the

next state;

7. gfsm move() checks the FSM control block to

see if there is another FSM (say ICAP proto-

col) that should get control when current FSM

reaches the state. If yes, then GFSM allocates

a new control block for the FSM that must

be executed, and places it on top of the stack.



Next it calls gfsm dispatch(), so the new FSM

starts executing;

8. ICAP FSM sends the request to ICAP server

and then returns, leaving its control block on

top of the stack;

9. gfsm move returns POSTPONE code to

HTTP, so HTTP handler just exits;

10. when a response from ICAP server is re-

ceived, ICAP code calls gfsm move() move;

11. if current FSM reaches its final state, then its

control block is popped from the stack and

an FSM for the underlying control block is

called;

12. so HTTP FSM is called again for the next state

to which it moved on step 6.

4.4 HTTP Processing

4.4.1 HTTP Hybrid State Machine

We have studied several HTTP servers and proxies

(Nginx, Apache Traffic Server, Cherokee, node.js,

Varnish and userver) and learned that all of them

use switch and/or if-else driven state machines. If

logging is switched off and all content is in cache,

then HTTP parser becomes the hottest spot. Sim-

plified output of perf for Nginx under simple DoS

is shown below (Nginx’s calls begin with ’ngx ’

prefix, memcpy and recv are standard LIBC calls):

% symbol name

1 . 5719 n g x h t t p p a r s e h e a d e r l i n e

1 . 0303 n g x v s l p r i n t f

0 . 6401 memcpy

0 . 5807 r e c v

0 . 5156 n g x l i n u x s e n d f i l e c h a i n

0 . 4990 n g x h t t p l i m i t r e q h a n d l e r

The next hot spots are linked to complicated ap-

plication logic (ngx vslprintf ) and I/O. I/O issue

in Tempesta is addressed by Synchronous Sockets.

The problem with HTTP parsing is that HTTP pars-

ing code is comparable in size with L1 instruction

cache and processes one character at a time with

significant number of branches. Modern compilers

optimize large switch statements to lookup tables

that minimizes number of conditional jumps, but

branch misprediction and instruction cache misses

still hurt performance of the state machine. More-

over, Nginx parser processes some input data two

and more times (e.g., ngx http parse request line()

for sw method state).

Typically HTTP deterministic finite automaton

(DFA) has small number of branches and loops,

but relatively big cardinality of the input alphabet

(98 ASCII characters according to RFC 2616). De-

pending on the parser complexity the DFA can have

few hundreds states. Thus, implementing the state

machine as a classical DFA table that is just a ma-

trix of size Q ∗ Σ where Q is number of states and

Σ is alphabet cardinality, is impractical. Modern

hardware has tons of memory, but the DFA has ran-

dom access pattern which leads to poor data cache

hit rate.

To get better data and instruction caches hit rate

and lower code branching we use cache sensitive

hybrid HTTP state machine which combines table-

driven DFA with switch statements. Tempesta im-

plements two different state machines for HTTP

requests and responses and the bigger one (for re-

quests) currently has 209 states (we keep the accel-

erator logic as simple as possible), so the state num-

ber can be encoded with single byte. Each automa-

ton transition is described by 16 byte data structure:

# d e f i n e CTL STR 1

# d e f i n e CTL RANGE 2

# d e f i n e CTL SLOW PATH 4

# d e f i n e CTL ACTION 8

s t r u c t {
unsigned char c t l ;

unsigned char l e n g t h ;

unsigned s h o r t p a d d i n g ;

union {
s t r u c t {

unsigned i n t p a t t e r n [ 2 ] ;

unsigned char n e x t s t a t e [ 2 ] ;

} s t r ;

s t r u c t {
s t r u c t {

unsigned char r b e g i n ;

unsigned char sub ;

} r [ 4 ] ;

unsigned char n e x t s t a t e [ 4 ] ;

} r a n g e ;

} u ;

} XTrans ;

So each data cache line (64 bytes on modern

x86-64 hardware) contains 4 DFA transitions.

ctl determines FSM processing logic for the tran-

sition:

• transition type: CTL STR performs matches

against up to 2 patterns with 4 characters in

length, CTL RANGE matches a character of

input data against up to 4 character ranges;

• whether the transition has slow path: if cur-



rent state has more than 4 outgoing edges or

2 string patterns is not enough, that not all the

edges can be encoded, then we have to fall to

slow path encoded by switch statement;

• whether the automaton should perform some

actions (e.g., write a pointer to name of pro-

cessed header) when it leaves the state.

We use additional static table that maps ASCII

codes to [0...71] a sequence (it maps upper and

lower case letters to the same codes). The table also

keeps values in a special order, so that for example

symbols allowed for an HTTP header ([A-Za-z -

]) are mapped to one continuous subsequence and

can be described by a single range. Hopefully, due

to HTTP DFA properties only the first range is ob-

served in most cases, and slow paths are taken very

rarely. Currently we have only 6 states that use

slow path transitions for the whole requests pro-

cessing state machine.

str union can decode up to 2 transitions match-

ing to different string patterns. Figure 2 shows an

example of an automaton that parses GET, PUT,

PROPFIND and PROPPATCH methods in 3 transi-

tions at most.

GET PUT

PROPFIND PROPPATCH

0

1

G

2

P

ET..

3

IND.

4

UT.. ROPF ROPP (slow path)

Figure 2: Automaton for parsing GET, PUT,

PROPFIND and PROPPATCH HTTP methods

To match string patterns a 4-byte integer is used.

If the pattern is shorter than 4 bytes, then the rest

of the byte is filled by 0xff value that is treated as

wildcard.

Note that state 3 has 3 outgoing transitions while

we can encode only 2 of them. Since PROPPATCH

method is relatively rare, then it can be parsed in

slow path, switch-driven part of the state machine.

4.4.2 HTTP Normalization

There are many techniques to avoid HTTP intru-

sion detection systems [30] [29] [28]. In most cases

the problem is that an IDS and a defended Web

server interpret HTTP requests differently which

leads to false negatives. It’s a common practice

for modern HTTP proxies to send client’s HTTP

request to back-end Web server unchanged. There

is a possibility that in case a proxy changes HTTP

requests, it can accidentally break Web applica-

tion logic. So this kind of behavior is vulnera-

ble, but it’s safe in normal circumstances. This

problem is mostly relevant to Web application fire-

walls rather than DDoS mitigation systems, so

we skip details of HTTP requests normalization

here and just mention that Tempesta removes some

HTTP ambiguities and provides normalized HTTP

requests to classification algorithms and transmits

them to back-end servers in a normalized form.

Like Snort [25] the normalization is performed de-

pending on specified server personality, so a sys-

tem administrator can specify which transforma-

tions are desired.

4.5 Caching

As it was mentioned previously, one of the main

Tempesta goals is to provide robust foundation for

DDoS prevention system. In some cases at least a

few requests from a client are needed to classify its

session (this is especially true for classifiers which

works on application level). Since DDoS botnet

can contain up to hundreds of thousands of zom-

bies and activate them all at the same time, then up

to million of requests should be serviced before the

system goes to effective defense mode. If a reverse-

proxy, which runs the classifier, uses on-disk cache

to serve Web content significantly larger than avail-

able RAM, then under such circumstances it would

go into thrashing mode, that causes the system per-

formance collapse. So the Web accelerator itself

becomes a victim of DDoS attack and cannot effi-

ciently execute classification logic.

Traditional caching Web servers use filesystem

to store their content. Filesystem operations are

very slow due to disk operations, heavy synchro-

nization mechanisms and dentry lookups suitable

only for directories and files. Instead, Tempesta



uses our own lightweight embedded in-memory

database with persistency to handle cache ob-

jects, static content, filter rules (section 4.8). The

database also can be used to store resolver results,

events and access logs or traffic dumps.

Thus, Tempesta Web cache and stored static con-

tent always fully fit into available main memory, so

there is no disk I/O operations involved in client

requests servicing. HTTP responses received from

back-end server are saved in main memory after

delivering to clients. To process further client re-

quests quicker we store whole response messages

(including HTTP headers) with a list of buffers,

which are directly used in socket send queue.

All files of Web content cache are mmap()’ed

and mlock()’ed to eliminate disk accesses. The

cache persistency is provided by standard VMM

mechanisms which synchronize dirty RAM pages

with disk. A helping threads are introduced for

eviction of old and/or rarely accessed cache entries

and loading Web content from disk to the cache

database. The second thread monitors on-disk Web

content directory through inotify(7) interface for

newly created or modified files. To load a Web

content file into in-memory database the thread

reads the file by pieces directly into the database

mmap()’ed area. The pieces are indexed by the

database and can be directly used by TCP sending

code. Thus, the database cache contains prepro-

cessed socket buffers instead of raw data. Mean-

time, it is possible to update Web server content

directory in runtime.

4.6 Requests Classification

As it was depicted in section 2 that there are plenty

of classification methods which require access to

traffic data at different network layers. Tempesta

provides following hooks to use in classification

modules:

• classify ipv4()/classify ipv6() - called for each

received IPv4/IPv6 client packet;

• classify tcp() - called for each received TCP

segment (not all IP packets contain TCP

header, so we split IP and TCP callbacks);

• classify conn estab() - called when a new

client connection is established (many TCP

SYNs can precede an established connection,

so it’s more efficient to handle events for

established and closed connections plus to

events for SYN and FIN segments);

• classify conn close() - called when a client

connection closed;

• classify tcp timer retrans() - called on re-

transmits to client (e.g., SYN+ACK or data);

• classify tcp timer keepalive() - called on

sending TCP keep alive segments;

• classify tcp window() - called when we

choose a our window size to report to client;

• classify tcp zwp() - called when peer reported

zero window, so we cannot send data and must

send TCP zero window probing segments;

Last four TCP specific hooks are quite useful to

detect attacks like Slow HTTP [17] and/or imple-

ment client transmissions rate limiting and tarpit

modules.

There is no specific classification hooks for

HTTP, instead a traffic analyzing module should

use GFSM hooks for particular HTTP processing

phases.

The callbacks (except the last four TCP specific)

return one of the following constants:

• PASS - current packet looks good and we can

safely pass it;

• BLOCK - the packet looks malicious and we

need to block all packets, including this, from

the client;

• POSTPONE - we need more packets to make

a decision, current packet must be stashed and

will be sent to the destination (if is decided as

innocent) with following packets at once.

If TCP event, incoming packet, request or whole

client was decided dangerous, then the filter hook

is called. So we block the first occurrence of mali-

cious traffic and early detect intentional TCP con-

nection slowdowns.

Currently Tempesta equipped with only one sim-

ple classification module which uses just a few

of the callbacks. It analyzes HTTP requests rate,

number of simultaneous connections and rate of

new connections per one client. The first two

limits work very similar to Nginx limiting mod-

ules [9] [10]. If a client exceeds one of the limit,

then filter module is asked to block the client.



HTTP connection sockets are organized in or-

dered list using tcp hashinfo hash table. Order-

ing in the list is determined by weight - specific

value which is assigned by classification modules

depending on how the connection aggressive is. If

stress module detects the local or back-end sys-

tem overloading, then it asks classification mod-

ule to evict some connections, so the most aggres-

sive connections are dropped and the clients are

blocked.

In some cases classification logic can use ma-

chine learning algorithms. Some of the algorithms

(e.g Hidden Markov Model) has two phases: learn-

ing (training) and actual detection work. Train-

ing is usually relatively expensive. Web applica-

tion firewalls also can use very slow protection

logic, which deeply parses HTML, XML and so

on. So, there is no sense to run such heavy-weight

logic in kernel, especially in deferred interrupt con-

text. Thus, using GFSM Tempesta can offload

heavy classification and/or training logic to exter-

nal servers (e.g., through ICAP interface) or just

clone a packet and deliver it it a local user space

daemon.

4.7 Stress Accounting

To cope with DDoS attacks which are indiscernible

from real flashcrowds, stress modules detect that

local system (on which Tempesta is running) or

back-end servers are overloaded. When a stress

module decides that overloading occurred it calls

generic classification logic, which shrinks current

connections list. A classifier assigns weights to cur-

rently established connections depending on how

much stress a connection causes to the system. The

mostly aggressive connections are closed.

Currently only local stress module is imple-

mented. It measures current memory consumption,

internal queues size, latencies and few other met-

rics. All the metrics are configurable and if some of

them are greater than specified limits, then the sys-

tem stress is reported and Tempesta begins to evict

connections. The weights are assigned to connec-

tions also depending on the values of the measures.

4.8 Filtering

Filter modules work on three network layers: Net-

filter for network layer, Linux Security Modules

(LSM) for TCP (transport layer) and application

layer.

On application layer a filter module should be

registered through GFSM interfaces, which are

called by Web accelerator engine. Appropriate

FSM control block contains connection socket, so

the filter is able to terminate the connection, send

HTTP error message or add a rule to block the

client traffic on network layer.

Since we dynamically add new rules, we need to

care about temporality of the rules. Since DDoS

bots in most cases employ common user resources,

it’s unwished to block IP addresses forever. Rather

we add blocking rules for some period of time after

which they are obsolete. If the address is decided

as attacking again, then a new blocking rule for it

is produced. The rules are stored and managed us-

ing the same in-memory database as mentioned in

section 4.5.

So like Kernel Blocking Firewall [13], the

blocked addresses are also organized in LRU list,

thus they can be unblocked by a timer expiration or

be evicted from the list if there is no enough mem-

ory (the last is very rare case on modern machines

with gigabytes of RAM). We move a blocked ad-

dress to the beginning of LRU list each time when

we get a packet from the address. LRU is most suit-

able cache eviction strategy for DDoS bots because

it stores rules for the most active (and harmful)

clients and evicts an address when it stops send-

ing. The rules database is also persistent, so black

list is loaded back after system reboot.

Tempesta also supports loading of external

blocking rules. The rules can work on all net-

work layers. For example, one can specify a rule

which makes Tempesta to block all HTTP requests

from IP 1.2.3.4 and which contain ”Some browser”

string in User-Agent HTTP header value.

5 Experiments

In all our experiments we used two servers con-

nected back-to-back with a 10Gbps Ethernet link.

One server, a 10-core Intel Xeon E7-4850 (2-

2.4GHz) with 64GB RAM (One CPU with 10

cores), was used to run server applications such

as an HTTP accelerator. It was running Linux

3.10.10. The other server, a 6-core Intel Xeon

X5675 with 32GB RAM, was used to run a traffic

generator on Linux 2.6.32. The servers were con-

nected using 10Gbps Intel Ethernet adapters with

40 separate RX and TX queues.



5.1 Synchronous Sockets

To start with, we measured the performance of

three socket implementations: Synchronous Sock-

ets, plain kernel sockets (written similar to the code

used in Ceph [27]), and user-mode sockets with op-

timizations in connection acceptance. In all tests

we used a multi-threaded TCP client that estab-

lished multiple connections with the server in each

thread and sent several thousands 64-byte messages

on each connection. The servers simply read mes-

sages and accept new connections in one thread, so

only one CPU core is used for server.

First, we measured the time it takes to estab-

lish 20,000 connections while sending messages

on each established connection (when a connection

is established the client immediately starts sending

messages). This is more complex, but realistic in

context of DDoS, rather than just new connections

establishing or sending messages over already es-

tablished connections. Results are shown in Fig-

ure 3.
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Figure 3: Performance of connection establishing

We made the following optimizations for the

user-space sockets test. We increased the back-

log parameter of listen(2) system call from 100

to 1000, and accordingly set /proc/sys/net/core/-

somaxconn to 1000 as well (it is 128 by default).

Also, we placed listening sockets in non-blocking

mode and run accept(2) in a loop each time epoll(7)

reported that the descriptor was ready.

Kernel sockets use work queues, so actual work

is done in the kernel thread context rather than in

the softirq context. They show better results and a

smoother performance curve than user-mode sock-

ets due to lighter context switches (between kernel

threads and softirq only) and no copying. How-

ever, it takes over 9 seconds to establish 20,000

connections with kernel sockets, while with Syn-

chronous Sockets it takes less than 2. The reason

for such a big difference is not just the different ex-

ecution context, but also the extra work that simple

kernel sockets do (operating with work queues is

relatively expensive).

In the second test of socket implementations we

measured the relationship between the request rate

(number of requests per second) and the number

of established connections. Results are depicted in

Figure 4 (connections axis is log-scaled).
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Figure 4: Requests per second for simple socket

servers

The results show that Syncronous Sockets per-

form not only faster than other implementations,

but also is more stable as the number of connec-

tions increases. At 20,000 concurrent connections

they process more requests per second (3,36 mil-

lion) than regular kernel-mode sockets at 32 con-

nections (3,18 million).

5.2 HTTP Hybrid State Machine

Since Tempesta and other HTTP servers use

very different HTTP state machines, it’s dif-

ficult to directly compare the performance of

a HTTP Hybrid State Machine and traditional

switch-driven state machines. So we devel-

oped a microbenchmark that measured the per-

formance of the two most critical HTTP pars-

ing functions (ngx http parse header line() and

ngx http parse request line()) of the popular user-



mode HTTP server Nginx version 1.5.6. The same

state machine was implemented using our hybrid

approach. In the test we executed the parsers one

million times against a single HTTP request of

1381 bytes in length (note that all data was in L1

data cache). Results are shown in Figure 5.

Hybrid SM Nginx

Parse header line 4541ms 6101ms

Parse request method 2910ms 5378ms

Figure 5: Comparison of HTTP Hybrid State Ma-

chine and Nginx HTTP parser processing HTTP

header lines and request methods

5.3 Tempesta HTTP Accelerator

Next we measured the performance of our Tem-

pesta prototype and Nginx in the most valuable

metric - time to service a regular client request that

is fulfilled from local cache, and time to block a

client when HTTP request rate limit is exceeded.

Nginx has been chosen as most widespread Web

accelerator and platform for WAF.

Nginx was configured with 10 worker processes

(one worker process per core). RFS was enabled on

server system. NIC interrupt queues were binded

to all CPU cores such that each core has 4 as-

signed TX and RX queues. Following configura-

tion options were switched on: multi accept, send-

file, epoll, tcp nopush and tcp nodelay. We also

switched off any logging in Nginx configuration to

eliminate unnecessary filesystem operations.

To measure the number of requests per second

each server can handle depending on the number of

concurrent connections, we sent 10 million HTTP

requests using Siege [19]. We ran a warming test

of one thousand requests just before the actual test

to make sure that all software and hardware caches

are warmed. In the test both servers were serving a

612-byte static index page. Tempesta had the page

preloaded into its cache. The performance results

are shown in Figure 6.

Results for a single connection are worse than

in tests with more concurrent connections due to

utilization of only one CPU core instead of 10

(we have switched off hyper threading). Tem-

pesta achieves the best result, 552 thousands re-

quests per second at 32 connections. Running on

the same hardware, Nginx gets his performance
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Figure 6: Requests per second for Tempesta and

Nginx

peak, 116 thousands rps, at 128 concurrent clients.

Nginx does more operations with memory and

services static pages from filesystems, so concur-

rency slightly greater than available CPU cores

(and worker processes in our case) is better for it.

However, Nginx quickly loses points at 512 con-

nections (only 79,300 rps) which stays almost the

same at 1024 connections (76,980 rps). Further

increase of the number of connections quickly de-

grade the server performance and leads to only 41

thousands request per second at 20 thousands con-

nections.

Tempesta has smoother performance degrada-

tion than Nginx. Tempesta from 552 thousand rps

at 32 connections to 511 thousand rps at 20 thou-

sand connections versus from 116 thousands rps to

41 thousands rps correspondingly for Nginx.

Both servers have very different rate limit block-

ing strategies. Nginx sends 503 Service Tem-

porarily Unavailable responses and gently closes

the connection. Tempesta just frees all data struc-

tures linked with the connection and drops all pack-

ets from the client for period of time while the

client still keeps the TCP connection open. This is

roughly to normal users, but very efficient in battle

with DDoS bots. So it’s hard to perform blocking

benchmarks and compare results for the servers.

However, we made latency microbenchmark to

measure how fast the servers operate in normal

conditions and block a user by rate limit. Nginx

sends reply for normal and blocked requests, so we

have measured time between receiving a request

and sending an appropriate response. We did the



same to measure time required to process a request

from local cache for Tempesta. Since Tempesta

does not send any reply to blocked requests, but

rather just silently drops it, we have added timing

for request processing to our code.

Block Cache

Nginx 23us 22us

Tempesta 4us 6us

Figure 7: Average time to block a client or serve a

normal request

Since a blocked client cannot send messages the

values in the table were calculated as average val-

ues for service time for one thousand requests.

In blocking tests Nginx responds with a 537-byte

HTML file.

The time to block a request is slightly higher for

Nginx than the time to service a normal request

from local cache. That is because the limiting logic

is implemented in an Nginx extension module, so

Nginx must call the module in addition to sending

static content. The rate limiting module also sends

the HTTP response code 503 ”Service Temporar-

ily Unavailable” which is a static file. Substan-

tial amount of system resources is used to block

a client, therefore this approach is not suitable for

filtering out a massive DDoS attack.

6 Availability

The Tempesta source code is pub-

lished under GNU GPL version 2 and

is freely available for download at

https://github.com/natsys/tempesta.
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