

Linux Kernel Extensions
for Databases

Alexander Krizhanovsky

Tempesta Technologies, Inc.

ak@tempesta-tech.com

Who am I?

CEO & CTO at NatSys Lab & Tempesta Technologies

Tempesta Technologies (Seattle, WA)
● Subsidiary of NatSys Lab. developing Tempesta FW – a first and

only hybrid of HTTP accelerator and firewall for DDoS mitigation &
WAF

NatSys Lab (Moscow, Russia)
● Custom software development in:

– high performance network traffic processing
– databases

The begin
(many years ago)

Database to store Instant messenger's history

Plenty of data (NoSQL, 3-touple key)

High performance

Some consistency (no transactions)

2-3 months (quick prototype)

Simple DBMS

Disclamer:
memory & I/O only,
no index,
no locking,
no queries

“DBMS” means
InnoDB

Linux VMM?

open(O_DIRECT): OS kernel bypass

 «In short, the whole "let's bypass the OS" notion is just fundamentally
broken. It sounds simple, but it sounds simple only to an idiot who writes
databases and doesn't even UNDERSTAND what an OS is meant to
do.»

Linus Torvalds
«Re: O_DIRECT question»

https://lkml.org/lkml/2007/1/11/129

mmap(2)!

Automatic page eviction

Transparrent persistency

I/O is managed by OS

...and ever radix tree index for free!

x86-64 page table
(radix tree)

A tree in the tree

a.0

c.0

a.1

c.1

Page table
a b

c

Application Tree

mmap(2): index for free

 $ grep 6f0000000000 /proc/[0-9]*/maps
 $

 DbItem *db = mmap(0x6f0000000000, 0x40000000 /* 1GB */, ...);

 DbItem *x = (DbItem *)(0x6f0000000000 + key);

...or just an array

 DbItem *db = mmap(0, 0x40000000 /* 1GB */, ...);

 DbItem *x = &db[key];

Virtual memory isn't for free

TLB cache is small (~1024 entries, i.e. 4MB)

TLB cache miss is up to 4 memory transfers

Spacial locality is crucial: 1 address outlier is up to 12KB
…but Linux VMM coalesces
memory areas

Context switch of user-space
processes invalidates TLB
...but threads and user/kernel
context switches are cheap

Lesson 1

Large mmap()'s are expensive

Spacial locality is your friend

Kernel mappings are resistant to context switches

DBMS vs OS

Stonebreaker, "Operating System Support for Database
Management”, 1981
● OS buffers (pages) force out with controlled order
● Record-oriented FS (block != record)
● Data consistency control (transactions)
● FS blocks physical contiguity
● Tree structured FS: a tree in a tree
● Scheduling, process management and IPC

Filesystem: extents

Modern Linux filesystems: BtrFS, EXT4, XFS

Large contigous space is allocated at once

Per-extent addressing

Lesson 2

There are no (or small) file blocks fragmentation

There are no trees inside extent

fallocate(2) became my new friend

Transactions and consistency control
(InnoDB case)

Lesson 3

Atomicity: which pages and when are written

Database operates on record granularity

Q: Can modern filesystem do this for us?

Log-enhanced filesystems

XFS – metadata only

EXT4 – metadata and data

Log writes are sequential, data updates are batched

Double writes on data updates

Log-structured filesystems

BSD LFS, Nilfs2

Dirty data blocks are written to next available segment

Changed metadata is also written to new location

...so poor performance on data updates

Inodes aren't at fixed location → inode map

Garbage collection of dead blocks (with significant overhead)

Poor fragmentation on large files → slow updates

Copy-On-Write filesystems

BtrFS, ZFS

Whole tree branches are COW'ed

Constant root place

Still fragmentation issues and heavy write loads

Very poor at random writes (OLTP), better for OLAP

Soft Updates

BSD UFS2

Proper ordering to keep filesystem structure consistent (metadata)

Garbage collection to gather lost data blocks

Knows about filesystem metadata, not about stored data

Lesson 4:
Data consistency control

Can log-enhanced data journaling FS replace doublewrite buffer?
https://www.percona.com/blog/2015/06/17/update-on-the-innodb-double-write-buffer-and-ext4-
transactions/
, by Yves Trudeau, Percona.

NOT!
● Filesystem gurantees data block consistency, not group of blocks!

https://www.percona.com/blog/2015/06/17/update-on-the-innodb-double-write-buffer-and-ext4-transactions/
https://www.percona.com/blog/2015/06/17/update-on-the-innodb-double-write-buffer-and-ext4-transactions/

Lesson 5

Modern Linux filesystems are unstructured

Page eviction

Typically current process reclaims memory

kswapd – alloc_pages() slow path

OOM

active list

inactive list

add

freeP

P

P

P

P P

P

P

referenced

File synchronization syscalls

open(.., O_SYNC | O_DSYNC)

fsync(int fd)

fdatasync(int fd)

msync(int *addr, size_t len,..)

sync_file_range(int fd, off64_t off, off64_t nbytes,..)

File synchronization syscalls

open(.., O_SYNC | O_DSYNC)

fsync(int fd)

fdatasync(int fd)

msync(int *addr, size_t len,..)

sync_file_range(int fd, off64_t off, off64_t nbytes,..)

No page subset syncrhonization

write(fd, buf, 1GB) – isn't atomic against system failure

Some pages can be flushed before synchronization

Flush out advises

posix_fadvise(int fd, off_t offset, off_t len, int advice)

● POSIX_FADV_DONTNEED – invalidate specified pages
 int invalidate_inode_page(struct page *page) {
 if (PageDirty(page) || PageWriteback(page))
 return 0;

madvise(void *addr, size_t length, int advice)

MADV_DONTNEED – unmap page table entries, initializes dirty
pages flushing

Lesson 6:
Linux VMM as DBMS engine?

Linux VMM
● evicts dirty pages
● it doesn't know exactly whether they're still needed (DONTNEED!)
● nobody knows when the pages are synced
● checkpoint is typically full database file sync
● performance: locked scans for free/clean pages by timeouts and

no-memory

Don't use mmap() if you want consistency!

Transactional filesystems: Reiser4

Hybrid TM: Journaling or Write-Anywhere (Copy-On-Write)

Only small data block writes are transactional

Full transaction support for large writes isn't implemented

Transactional filesystems: BtrFS

Uses log-trees, so [probaly] can be used instead of doublewrite buffer

ioctl(): BTRFS_IOC_TRANS_START and BTRFS_IOC_TRANS_END

Transactional filesystems: others

Valor
R.P.Spillane et al, “Enabling Transactional File Access via Lightweight Kernel
Extensions”, FAST'09

● Transactions: kernel module betweem VFS and filesystem
● New transactional syscalls (log begin, log append, log resolve,

transaction sync, locking)
● patched pdflush for eviction in proper order

Windows TxF
● deprecated

Transactional operating systems

TxOS
D.E.Porter et al., “Operating System Transactions”, SOSP'09

● Almost any sequence of syscalls can run in transactional context
● New transactional syscalls (sys_xbegin, sys_xend, sys_xabort)
● Alters kernel data structures by transactional headers
● Shadow-copies consistent data structures
● Properly resolves conflicts between transactional and non-

transactional calls

The same OS does the right job

Failure-atomic msync()
S.Park et al., “Failure-Atomic msync(): A Simple and Efficient Mechanism for
Preserving the Integrity of Durable Data”, Eurosys'13.

● No voluntary page writebacks: MAP_ATOMIC for mmap()
● Jounaled writeback

– msync()
– REDO logging
– page writebacks

Record-oriented filesystem

OpenVMS Record Management Service (RMS)
● Record formats: fixed length, variable length, stream
● Access methods: sequential, relative record number,

record address, index
● sys$get() & sys$put() instead of read() and write()

TempestaDB

Is part of TempestaFW (a hybrid of firewall and Web-accelerator)

In-memory database for Web-cache and firewall rules (must be fast!)
Stonebreaker's “The Traditional RDBMS Wisdom is All Wrong”

Accessed from kernel space (softirq!) as well as user space

Can be concurrently accessed by many processes

In-progress development

Kernel database for Web-accelerator?

Transport

http://natsys-lab.blogspot.ru/2015/03/linux-netlink-mmap-bulk-data-transfer.html

Collect query results → copy to some buffer

Zero-copy mmap() to user-space

Show to user

http://natsys-lab.blogspot.ru/2015/03/linux-netlink-mmap-bulk-data-transfer.html

TempestaDB internals

Preallocates large pool of huge pages at boot time
● so full DB file mmap() is compensated by huge pages
● 2MB extent = huge page

Tdbfs is used for custom mmap() and msync() for persistency

mmap() => record-orientation out of the box

No-steal force or no-force buffer management

no need for doublewrite buffer

undo and redo logging is up to application

Automatic cache eviction

TempestaDB internals

TempestaDB: trx write (no-steal)

TempestaDB: commit

TempestaDB: commit (force)

TempestaDB: commit (no-force)

TempestaDB: cache eviction

NUMA replication

NUMA sharding

Memory optimized

Cache conscious Burst Hash Trie
● short offsets instead of pointers
● (almost) lock-free

lock-free block allocator for virtually contiguous memory

Burst Hash Trie

Burst Hash Trie

Burst Hash Trie

Burst Hash Trie

Burst Hash Trie: transactions

Thanks!

Availability: https://github.com/tempesta-tech/tempesta

Blog: http://natsys-lab.blogspot.com

E-mail: ak@tempesta-tech.com

We are hiring!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

