Kernel HTTPS/TCP/IP stack for HT'TP DDoS mitigation

1%t Alexander Krizhanovsky
Tempesta Technologies, Inc.
Seattle, USA
ak @tempesta-tech.com

Abstract

Application layer HTTP DDoS attacks are usually mitigated
by HTTP accelerators or HTTP load balancers. However,
Linux socket interface used by the software doesn’t provide
reasonable performance for extreme loads caused by DDoS at-
tacks. Thus, HTTP accelerators are starting to bypass an OS
and to use user space TCP/IP stacks. This paper discusses the
drawbacks of the bypassing technique and explains why a gen-
eral purpose HTTP accelerator isn’t suitable for filtering vol-
umetric attacks. Neither OS nor HTTP accelerators provide
enough protection against application layer DDoS attacks.
Tempesta FW, an application delivery controller (ADC), ex-
tends the Linux TCP/IP stack with HTTPS and introduces a
multi-layer firewall. The resulting HTTPS/TCP/IP stack pro-
tects Web applications against DDoS and Web attacks, so user-
space programs can operate with preprocessed and cleaned
HTTP traffic and be protected against DDoS attacks.

Keywords

HTTPS, Linux kernel, DDoS mitigation, Web security, per-
formance

HTTPS isn’t a Second-class Protocol

Nowadays Internet applications are all-pervasive. Since the
amount of data exchanged over the Internet is always grow-
ing, the performance of HTTP processing becomes a crucial
issue. Application layer DDoS attacks make the issue even
more crucial. Although TCP and IP, implemented in an OS
kernel, mostly carry HTTPS messages over the Internet, it
seems that HTTPS is never considered for inclusion into an
OS kernel as a continuation of TCP/IP stack.

While OS traditionally filter attacks on TCP and IP layers
using firewalls, OS kernel doesn’t provide protection against
application layer attacks at all. Meantime, application layer
DDoS attacks are one of the most crucial security issues in the
modern Internet. In particular, some DDoS attacks employ
complex techniques and can efficiently mimic a flashcrowd.
This makes them hard to detect, so a victim system, even em-
ploying some DDoS mitigation logic, still must process tons
of malicious HTTP requests. Thus, HTTP processing of an
application layer DDoS mitigation solution must have out-
standing performance. The growth of SaaS businesses, Inter-
net of Things (IoT) and RESTful APIs stimulates the active

development of various Web applications, which are vulnera-
ble to application layer DDoS attacks and Web attacks.

Application layer HTTP DDoS attacks are usually miti-
gated by HTTP accelerators. However, Linux socket inter-
face, used by the software, doesn’t provide reasonable per-
formance for efficient filtration of DDoS attacks. Also HTTP
accelerators have no adequate interfaces to low layer OS in-
formation required for accurate classification of clients and
HTTP requests.

The kernel bypass approaches [19}10] address this sockets
API performance issue by building fast Web servers on top
of user-space TCP/IP stacks. However, kernel bypass Web
servers can’t be efficiently integrated with many of the use-
ful tools which are provided by the mature OS TCP/IP stack
(e.g. IPTables, tc, LVS, tcpdump), which limits their real life
usage.

Linux provides efficient zero-copy IO interfaces like send-
file(2) and vmsplice(2). However, HTTPS makes data copy-
ing between user and kernel address spaces a serious perfor-
mance hurdle: the standard OS API provides no way to send
a file over a TLS connection without copying. There are ef-
forts [4} 21]] to move TLS partially to kernel space. Also, es-
tablishing a new TLS connection requires 4 context switches
for the initial handshake which introduces additional over-
head. That creates an attack vector for HTTPS DDoS.

All in all, to be able to filter volumetric application layer
attacks, we have to either move HTTPS processing to the ker-
nel or move TCP/IP stack with Netfilter and traffic control to
user space. However, the full TCP/IP stack is a very huge and
complex code, so it’s not wise to implement and run it twice
in user and kernel spaces. The paper proposes to move only
basic and the most crucial parts of HTTPS processing to the
kernel.

Tempesta FW extends the Linux TCP/IP stack by HTTPS
and implements application layer firewall. As the a result, it
provides Web applications protection against various applica-
tion layer attacks, including DDoS, and reaches the same per-
formance as HTTP servers built on top of user space TCP/IP
stacks.

HTTP DDoS Resistance

While the OS kernel doesn’t deal with application (HTTPS)
layer, it can not provide solid protection against application
layer DDoS attacks. These attacks are usually mitigated

by user space HTTP accelerators. This section discusses
why traditional HTTP accelerators aren’t suitable to mitigate
HTTP DDoS attacks and how to improve them to be HTTP
DDoS resistant.

There are many HTTP accelerators developed to handle a
lot of concurrent connections and tens thousands of requests
per second. However, it seems as though none of them were
designed to process millions of requests per second, of which
most of them are malicious and must be filtered out. The
OS kernel doesn’t deal with HTTP at all, so it can’t filter out
DDoS attacks as well. L.e. neither HTTP accelerators nor OS
provide enough protection against application layer DDoS at-
tacks.

Optimizing HTTP Parser

We have studied several HTTP servers and proxies (Nginx,
Apache Traffic Server, Cherokee, node.js, and Varnish) and
learned that all of them use switch and/or if-else driven finite
state machines (FSMs). If logging is switched off and all
content is in the cache, then HTTP parser becomes the hottest
spot. Simplified output from perf for Nginx under simple
HTTP flood is shown below (Nginx’s calls begin with 'ngx_’
prefix):

% symbol name
1.5719 ngx_http_parse_header_line
1.0303 ngx_vslprintf
0.6401 memcpy
0.5807 recyv
0.5156 ngx_linux_sendfile_chain
0.4990 ngx_http_limit_req_-handler

Listing 1: Nginx profile for HTTP flood

Listing 2] shows a simplified switch driven HTTP parser:

/] state = 2, xstr_ptr = 'b’.
while (++str_ptr) {
switch (state) {
case 1:
/1
case 2:
switch (xstr_ptr) {
case ’a’:
!/
state
break ;
case 'b’:
3: !/
state =
break;

case ’c
/1
}

4: break ;
case 3:
/1l
}
5: !/

}
Listing 2: Dummy swtich driven HTTP parser

1: 6:
2. 7

1

|
o8}

If the FSM starts at state 2 with input character ’b’, then
the FSM performs the following jumps in code:

1. start and check current character;

2. check the state variable and jump to code for state 2 (label
3 on the listing);

3. assign next state to variable state and break to the end of
switch statement, i.e. do the second jump;

4. this is the end of code for state 2, so we do the 3rd jump to
the end of the outer switch statement;

5. now we’re at the end of the while statement and we do the
4th jump to the beginning of the loop;

6. move and check the next input character;
7. jump to state 3.

Thus, the FSM jumps a lot. We dont actually need the
variable state and instead of assigning value 3 to the vari-
able at step 3, we could just read the next character, check
it’s value and unconditionally jump to state 3. Basically,
Ragel [17] generates FSMs in exactly this way, without un-
necessary jumps and without the state variable. An HTTP
parser constructed using the more accurately coded FSM is
up to 3 times faster [12] than a dummy FSM on long HTTP
header lines.

HTTP-aware String Processing

While a developer can be optimistic about the most common
cases and write an HTTP accelerator in assumption that most
of HTTP fields have normal lengths, DDoS attacks are always
about corner cases. A careful attacker can craft a worklod
specially for a victim Web application. If your Web server
isn’t good at processing tons of packets, then the attacker
launches a flood attack against the server. If the server can’t
handle many connections, then the attacker will establish a lot
of connections with the server. If your server can’t efficiently
process long strings (e.g. values of HTTP headers), then the
attacker can send you HTTP requests with enormously long
HTTP headers. Generally, DDoS attacks are about corner
cases: if an HTTP accelerator is very fast in normal circum-
stances, it still can be quite inefficient under specially crafted
DDoS attack.

The FSM’s performance, shown on the listing 2] quickly
degrades as an input string grows. Some HTTP servers use
LIBC functions like memchr(), which employ SIMD instruc-
tions, to process HTTP strings. LIBC string functions are
developed to process common zero-terminated strings, and
they are not designed to validate input against allowed alpha-
bet (i.e. to verify that URI of an HTTP request contains only
RFC allowed characters).

Besides HTTP parsing, HTTP accelerator does a lot of
operations with parsed HTTP messages. In particular, strn-
casecmp() and family calls are very frequent in a common
HTTP accelerator.

Specially designed and implemented using AVX2 instruc-
tion set strings processing algorithms, with strong input vali-
dation against RFC-allowed character sets, can deliver up to
13x better performance. The algorithms’ descriptions and
benchmarks are out of the scope of the paper. The full de-
scription can be found in our blog article [[13].

Copyings and Syscalls

Listing[T]also shows copyings (memcpy()) and I/O (recv() and
ngx_linux_sendfile_chain()) as hot spots. Data copyings be-
tween kernel and user spaces, context switches introduced by
system calls, and slowness of the system calls are the subjects
for user space TCP/IP implementations.

Performance measurements of Tempesta FW show that if
HTTP is coupled with the Linux TCP/IP stack, then perfor-
mance of the resulting HTTP accelerator will be comparable
with an HTTP accelerator implemented on top of user space
TCP/IP stack.

Simple Web servers built on top of user space TCP/IP stack
can show outstanding performance. Sandstorm [[10] proposes
an extreme case of a very simple web server. They built a
light-weight network stack in user-space directly operating
with the network adapter and bypassing OS. The server pre-
generates packets, avoiding allocation and the initialization
of socket buffers. The packets already have established link-
layer, IP and TCP headers with calculated checksums. How-
ever, such a tightly optimized approach has several limitations
for usage in real world applications:

e path MTUs, and correspondingly TCP MSS, can differ on
network interfaces and also can be changed any time, so
different packet sizes must be used;

e TCP connections can use different TCP and IP options as
well as using IPv4 or IPv6;

e some HTTP headers, like cache and connection control,
must be generated on-the-fly depending on current connec-
tion properties;

o the technique can’t be used for TLS connections which are
almost mandatory for modern Web resources.

Sandstorm’s network stack employs NIC’s TX rign as the
sole output queue ignoring traffic control (TC) queueing dis-
ciplines. Meantime queueing discipline provides fair packet
scheduling among many network flows as well as control-
ling network delays, mitigating bufferbloat at transit network
points.

Meanwhile, coupling HTTPS with the Linux TCP/IP stack
also allows for the following optimizations:

o The removal of operations with file (struct file) and BSD
socket (struct socket) descriptors;

e The elimination of accept and receive socket queues be-
cause all processing of ingress traffic can be done in socket
callbacks;

o The extension of sk_buff API for paged fragments to im-
plement zero-copy HTTP messages processing and trans-
formation (e.g. removing an HTTP header from a request
or replacing it with a longer or shorter header).

e The use of controlled preemption to allow for the imple-
mentation of more efficient lock-free algorithms;

Coupling a Firewall with HTTP

Tight binding of HTTP to TCP/IP is required for efficient exe-
cution of multi-layer firewall rules. Let’s consider Wordpress
“Pingback” DDoS attack [24] as an example. This is a reflec-
tive DDoS attack which uses the Wordpress Pingback feature.

The result of this attack is that a third party Wordpress instal-
lation sends requests to a victim’s site. Since the attack uses
a regular Wordpress installation, the HTTP requests contain
the User-Agent header with the "WordPress” string.

To block the attack one can use a Web server’s filtering
abilities, e.g. Nginx’s User-Agent matching [[14]. However,
the Web server executes several system calls and does sev-
eral data copyings to block each request. That doesn’t work
quickly. A log monitor [6] like Fail2Ban[J3]] can be used to
generate firewall rules on-the-fly, but that requires parsing of
access log which is very expensive as well.

Another way to mitigate the attack is using IPTables [8]
to block all the packets containing the "WordPress™ string.
However, IPTables blindly inspects each packet using plain
string matching. For example, if a request contains a long
URI, then IPTables tries to find the string in the URI as well.
This makes the processing inefficient and error-prone, since
the URI can contain the string as well. Thus several non-
trivial optimizations must be used to make IPTables rules
match User-Agent value correctly. Moreover, IPTables can
find strings in single packet scope only, so if User-Agent
value crosses IP packet boundary, then [PTables can’t match
1t.

The HTTPS/TCP/IP Stack

This section describes the architecture of Tempesta FW, a
Linux application delivery controller (ADC), in the context
of HTTPS processing and multi-layer firewall. The core of
the project is a fast HTTP state machine built into the Linux
TCP/IP stack, so that there is a uniform stack of protocols: IP,
TCP, TLS, and HTTP.

HTTP and TLS messages are processed in softirq context,
right after TCP processing. Thus, TCP receive and accept
queues are not used. That removes unnecessary queueing
operations and makes HTTP processing faster because all
packet data is hot in all CPU caches. Ingress TCP segments
don’t wait in the receive queue and don’t waste system mem-
ory. Instead, they are immediately passed to HTTP parser
and then to a classifier module (Frang), which sorts them as
either innocent or malicious. Thus, like most firewalls Tem-
pesta FW efficiently uses drop early strategy.

Figure [T] shows the operation of Tempesta FW on an
ingress HTTP request:

1. HTTP request is received by the network adapter and veri-
fied against filtering tables of Frang limiting module.

2. Client’s account is found for the TCP socket. TCP window,
sent with appropriate ACK, is defined by QoS for this client
according to the client’s accounting.

3. The HTTP request is immediately parsed in softirq handler
while data is hot in CPU caches.

4. The request is analyzed by Frang and can be blocked at
IP layer using filter rule propagation so that subsequent
queries from the client are blocked at step 1.

5. The request is serviced from Web cache or forwarded to
an upstream server according to established load balancing
policy. The web cache is built on top of TempestaDB, an

in-memory database built on top of cache conscious lock-
free hash trie.

(Client accounting]

HTTP

"
Filter
B— NiC | »@_
1
-4~ Upstream
Block! =} - - — --*@
s T)
I é
1
5
Y TempestaDB
Rules Web Cache
—/

Figure 1: The HTTP/TCP/IP stack with filtering and QoS

Frang module implements strict validation of HTTP re-
quests according to a number of defined hard limits. The
limits include connection and request rates, size of different
HTTP fields, number of chunks in HTTP request to prevent
Slow HTTP [20], and many others. Frang implements a hard
blocking strategy suitable for stopping a Web application at-
tack: a malicious request is immediately blocked along with
the client’s IP.

HTTP sticky cookies module is integrated into the
HTTPS/TCP/IP stack. Apart from load balancing of persis-
tent HTTP sessions among a number of upstream servers,
the module is useful for cookies challenge. If an attacker
uses an HTTP client with restricted functionality to launch
a DDoS attack, then the bots can be unable to process Set-
Cookie header and will be blocked by Tempesta FW. We’re
also working on a JavaScript challenge module, which re-
quires the usage of an even more advanced HTTP client for
DDoS bots.

SSL/TLS handshake is a very expensive operation and this
creates a DDoS attack vector [22]]. While the most time dur-
ing the handshake is spent in math operations, the additional
context switches and copyings, in the case of using user space
cryptography library, are undesired. As a quick solution, we
ported mbed TLS [11] to the kernel. Surprisingly, recent
Linux kernels already have almost all TLS required crypto
algorithms, so our next step is to have mbed TLS crypto al-
gorithms replaced by appropriate Linux kernel crypto frame-
work routines.

Inter-CPU Sockets Transport

Tempesta FW is a reverse proxy, so 2 CPUs can send two
packets in opposite directions through the same two, client
and server, sockets. Since TCP control blocks of in the sock-
ets must be locked, it could lead to a deadlock. Moreover,
it’s not desirable to access to the same TCBs from different
CPUs.

Thus, we use a lock-free ring buffer as an inter-CPU trans-
port, shown by Figure[2] Each socket with its TCB is hosted
at a particular CPU. Each CPU has its own lock-free queue

based on a ring buffer. If a CPU needs to send some packet
through a socket owned by another CPU, then it sends a job
to the ring buffer of the CPU owning the target socket. If
the socket is owned by the same CPU, then the ring buffer
isn’t used. Thus, there is no lock contention and the crucial
data stays per-CPU. The architecture provides faster socket
reading which is important for managing huge ingress traffic
caused by DDoS. Also, thanks to absence of traditional in-
put queue and socket locks, we get lower latency for HTTP
processing.

Proxy . _______

o TCB /.\}\s\oftirq2 3
omL

RBFI T

Client | coooT +_ |Server
|\ RB !
=4 \ 1

AN [
~ [!

) o '
AP

1 softirql ' TCB

Figure 2: Inter-CPU sockets transport

QoS for Accurate DDoS Mitigation

While QoS is still under development, it must be mentioned
because it impacts the overall system design. Since some-
times DDoS requests are indistinguishable from normal client
requests, QoS module must smoothly reduce bandwidth for a
particular client (malicious or innocent) depending on a clas-
sification decision. The classification is performed based on
the client’s accounting data. Examples are the amount of CPU
and system memory used to service the client, and the ratio of
the number of HTTP requests from the client to the number of
responses from an upstream server. QoS can also be triggered
to reduce bandwidth of the less rated clients if the system un-
dergoes some stress conditions, such as massive packet drops,
insufficient CPU or memory resources, overrun queues and so
on. A small reduction of the bandwidth of the most active or
suspicious clients will protect the system from overloading
by either a flashcrowd or a DDoS attack.

The classification logic must intensively gather system
statistics to classify the clients. The system resource account-
ing is extremely important for protecting against asymmetric
DDoS attacks [2,116,122]], which waste victim’s resources at a
much higher rate than attacker’s, e.g. SSL/TLS [22] or com-
pression DDoS [[16] attacks. The statistics can be collected
in user space using getrusage(2) system call, but the system
call must be called too frequently, at the cost of numerous
context switches. Thus, efficient filtration at application layer
requires access to lower kernel layer, and user space TCP/IP
doesn’t solve the issue.

Keep the Kernel Small

Basically, the idea to move HTTPS to OS kernel isn’t new.
Several mainstream operating systems implement HTTP and

TLS logic in kernel. AIX uses the kernel Web-cache acceler-
ator AFPA (FRCA) [9} 23| [7]. Solaris provides SSL Kernel
Proxy [15]] for a while. There are also experiments [4} 21]
with kernel space TLS for zero-copy bulk data transfers over
encrypted connections.

Although AFPA [9]] has shown very high performance, the
authors regarded the approach as awkward and predicted that
it would lead to a paradigm where the benefits of address
spaces were lost. Thus, Tempesta FW’s architecture proposes
to implement only the following in the kernel space to keep
the kernel as small as possible:

e generic functionality, like basic HTTP. It must be generic
enough to support different Web and database applications.

o cfficient and flexible interfaces to the generic functionality
which allows for user-space applications use of the kernel
API, without architecture or performance restrictions.

e performance critical and quick synchronous operations, as
kernel is not a good place to run heavy logic. Things like
client classification for DDoS mitigation using machine
learning can be done asynchronously and should not be
done in kernel space.

o mission critical logic. An HTTP accelerator should at least
return the 503 Service Unavailable error instead of becom-
ing unresponsive due to overload.

Blocking malicious HTTP requests, load balancing, and
servicing HTTP requests from Web cache are simple and fast
processes. At the same time, other required logic can be
too slow or too big for implementation in kernel space. A
good example of heavy and noncritical logic is HTTP com-
pression. In fact, if a client sends Accept-Encoding which
requires some compression, a servers still can send plain text
representation. Such logic must be implemented in user space
to minimise kernel space code. Thus, we should be able to
pass some HTTP requests to user space for complex process-
ing and get appropriate responses from user space. To ad-
dress the issue, we’re developing a fast zero-copy transport
of HTTP messages between kernel and user spaces.

The scenario for processing an ingress HTTP request and
sending a generated HTTP response is shown in Figure 3}

1. Softirq handler receives packets that hold an HTTP mes-
sage. The Linux TCP/IP stack is patched so that the
packet’s payload is always placed in memory pages, which
can be mmap()’ed.

2. The message is parsed and all required data, including the
parsing meta- information and the packet’s data, are placed
in several memory pages. HTTP messages are processed
in a zero-copy fashion, i.e. HTTP fields are not copied.
Instead, appropriate pointers are stored in the parsing meta-
information which point into the received packet data, like
the start of HTTP header field name and value.

3. When memory pages of the HTTP message are mapped
to the advanced classification process’ address space, the
softirq handler wakes up the process.

4. Now the process can run heavy logic on the mmap()’ed
message (let it be a request to simplify the example).

5. The process can generate a response for the request (e.g.
with HTTP error code for an improper request). The same
memory mapped region is used to pass the HTTP response
to the kernel.

6. Finally, softirq handler can send the response to the client.
User—space process

.
4

]
4. read HTTP request ,° .~ 5. write HTTP response !
Ve

|

I

User space Memory mapped region I
,,,,, e O S
1

]

Kernel space

3. wakeup ,I

- -

page mappings
Pages pool

7
HTTP ¢
message

. \
- 1. receive packet -
6. send response

Figure 3: Transport of HTTP messages between the kernel
and user spaces

Performance

We run benchmark tests to measure servicing of pure Web re-
quests from Web cache. Tempesta FW reached 1.8M requests
per seconds on a cheap 4-core machine. Our best tuned Nginx
on the same hardware showed results that were 3 times worse.
Seastar [19], when built on top of a user-space TCP/IP stack
(DPDK [3] in particular), only shows [[18] just 1.3M RPS on
4 cores. A full description of Tempesta FW’s benchmark (the
used hardware, the configuration, and the workload) is avail-
able at the project’s Wiki [[1].

It’s a challenge to build a testbed to emulate a DDoS attack
and measure how quickly the attack is blocked. However, we
expect that Tempesta FW’s filtering of HTTP DDoS requests
should outperform modern Web accelerators and low-layer
firewalls, even more due to the native filtering abilities.

Thus, bypassing Linux TCP/IP stack isn’t the only way to
get a fast HTTP accelerator or Web server.

Discussion

This paper proposes to move a Web accelerator, which is tra-
ditionally placed in user space, to OS kernel. Nevertheless,
it’s important not to end up with a "macrokernel” (as opposed
to microkernel) operating system, which moves everything
to kernel space. Several of our considerations regarding the
functionality of what should be in kernel space were defined
above. We must keep kernel code as small as possible. Now
Tempesta FW only has about 30,000 lines of kernel C code
(for example that can be compared to BtrFS code which has
about 120,000 lines of C code in Linux 4.8). Evolved in-
terfaces between the user and kernel spaces, such as passing
HTTP messages instead of raw TCP data, will help to keep
the kernel code as small as possible.

6
2x1 T
x10 Tempesta FW 0.5.0-pre5 ——
| \
1.5x10 / .
7]
6 |
& 1x10
500000 [
0 . .
1000 10000

Connections

Figure 4: HTTP Requests per second serviced from the
Tempesta FW’s cache

While TLS is very complex code, it doesn’t require com-
plex locking, advanced memory management, and so on. It
only took 1 human month for us to port mbed TLS, with all
necessary HTTPS interfaces to the kernel. Thus, it’s easier
to move TLS to the kernel than it is to move TCP/IP stack
to user space. Reusing Linux kernel crypt API for TLS will
reduce the effort, and the project code, even more.

A previous study [9]] considered the moving of an HTTP
server to kernel space as a bad practice. Currently, Tempesta
FW’s core should not be regarded as a drop-in replacement
for traditional Web servers or even HTTP accelerators. In-
stead, it’s supposed to stay in front of a more powerful, but
slower, HTTP server, accelerating normal traffic and drop-
ping early malicious traffic. Tempesta FW works perfectly
with traditional Web servers on the same host. Further fea-
tures development in user space using the kernel-user space
zero-copy transport will develop Tempesta FW nto a real
drop-in replacement for current HTTP servers and acceler-
ators.

The alternative way to build such ADC is to use user space
TCP/IP stack and build efficient HTTP accelerator and a fire-
wall on top of it. However, TCP/IP stack is basically huge
and complex code, so it’s not wise to implement and run it
twice in user and kernel spaces. Next, kernel TCP/IP stack is
already well integrated with many powerful tools like IPTa-
bles, IPVS, tc, tcpdump and many others. The tools are un-
available for a user space TCP/IP stack, or require complex
interfaces.

Reimplementing all the necessary features in user space
to get a featureful ADC brings additional code complexity
and makes the code slower. Small specialized implementa-
tions [10] outperform the Linux TCP/IP stack, but introduc-
ing more features will typically hit the same issues as in the
Linux TCP/IP stack.

Availability

The Tempesta FW’s source code is published under GNU
GPLv2 and is available at https://github.com/
tempesta-tech/tempestal

References

[1] HTTP cache performance. In Tempesta FW Wiki.
https://github.com/tempesta—-tech/
tempesta/wiki/HTTP-cache-performance.

[2] Chen, A.; Sriraman, A.; Vaidya, T.; Zhang, Y.; Hae-
berlen, A.; Loo, B. T.; Phan, L. T. X_; Sherr, M.; Shields,
C.; and Zhou, W. 2016. Dispersing asymmetric ddos
attacks with splitstack. In Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, 197-203.

[3] Data Plain Development Kit. http://dpdk.org/,

[4] Edge, J. 2015. TLS in the kernel. In LWN. https:
//lwn.net/Articles/666509/.

[5] Fail2ban. http://www.fail2ban.orgq.

[6] Glass, B. 2002. Log Monitors in BSD UNIX. In BSD-
Con, 131-142.

[7] IBM. Serving static content faster with Fast Response
Cache Accelerator. In IBM Knowledge Center. https:
//www.ibm.com/support/knowledgecenter/
SSEQTJ_8.5.5/com.ibm.websphere.ihs.
doc/ihs/tihs cacheenable.htmll

[8] 2015. IPTABLES block User-Agent. In Server-
Fault discussion. http://serverfault.com/
questions/690870/iptables-block—user—
agent.

[9] Joubert, P; King, R.; Neves, R.; Russinovich, M.; and
Tracey, J. 2001. High-performance memory-based web
servers: Kernel and user-space performance. In Proceed-
ings of the General Track: 2001 USENIX Annual Techni-
cal Conference, 175-187.

[10] Marinos, I.; Watson, R. N. M.; and Handley, M. 2014.
Network stack specialization for performance. In ACM
SIGCOMM 2014 Conference, SIGCOMM’14, Chicago,
IL, USA, August 17-22, 2014, 175-186.

[11] The mbed TLS project. |https://tls.mbed.
org/.

[12] 2014. Fast Finite State Machine for HTTP Parsing.
http://natsys—-lab.blogspot.ru/2014/
1l1/the-fast—-finite-state-machine—for—
http.htmll

[13] 2016. HTTP Strings Processing Using C, SSE4.2
and AVX2. http://natsys—-lab.blogspot.ru/
2016/10/http-strings—processing—using-
c—ssed2.html.

[14] 2015. Mitigating DDoS Attacks with NG-
INX and NGINX Plus. In Nginx Blog. |https:
//www.nginx.com/blog/mitigating—-ddos—
attacks—-with-nginx—and-nginx-plus/.

[15] Oracle. SSL Kernel Proxy Encrypts Web Server Com-
munications. In Securing the Network in Oracle Solaris
11.1. https://docs.oracle.com/cd/E26502_
01/html/E28990/webk—2.htmll

[16] Pellegrino, G.; Balzarotti, D.; Winter, S.; and Suri, N.
2015. In the compression hornet’s nest: A security study

https://github.com/tempesta-tech/tempesta
https://github.com/tempesta-tech/tempesta
https://github.com/tempesta-tech/tempesta/wiki/HTTP-cache-performance
https://github.com/tempesta-tech/tempesta/wiki/HTTP-cache-performance
http://dpdk.org/
https://lwn.net/Articles/666509/
https://lwn.net/Articles/666509/
http://www.fail2ban.org
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_cacheenable.html
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_cacheenable.html
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_cacheenable.html
https://www.ibm.com/support/knowledgecenter/SSEQTJ_8.5.5/com.ibm.websphere.ihs.doc/ihs/tihs_cacheenable.html
http://serverfault.com/questions/690870/iptables-block-user-agent
http://serverfault.com/questions/690870/iptables-block-user-agent
http://serverfault.com/questions/690870/iptables-block-user-agent
https://tls.mbed.org/
https://tls.mbed.org/
http://natsys-lab.blogspot.ru/2014/11/the-fast-finite-state-machine-for-http.html
http://natsys-lab.blogspot.ru/2014/11/the-fast-finite-state-machine-for-http.html
http://natsys-lab.blogspot.ru/2014/11/the-fast-finite-state-machine-for-http.html
http://natsys-lab.blogspot.ru/2016/10/http-strings-processing-using-c-sse42.html
http://natsys-lab.blogspot.ru/2016/10/http-strings-processing-using-c-sse42.html
http://natsys-lab.blogspot.ru/2016/10/http-strings-processing-using-c-sse42.html
https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/
https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/
https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/
https://docs.oracle.com/cd/E26502_01/html/E28990/webk-2.html
https://docs.oracle.com/cd/E26502_01/html/E28990/webk-2.html

of data compression in network services. In Proceedings
of the 24th USENIX Conference on Security Symposium,
801-816.

[17] Ragel State Machine Compiler. http://www.colm.
net/open-source/ragel/.

[18] Seastar HTTP performance. http://www.
seastar—-project.org/http-performance/\

[19] The Seastar project. http://www.seastar-
project.org/.

[20] Slowloris, the low bandwidth, yet greedy and poi-
sonous HTTP client. http://ha.ckers.org/
slowloris/.

[21] Stewart, R.; Gurney, J.; and Long, S. 2015. Optimizing
tls for highbandwidth applications in freebsd. In Proceed-
ings of AsiaBSDCon Conference. https://people.
freebsd.org/~rrs/asiabsd_2015_tls.pdfl

[22] The thc-ssl-dos tool. The Hackers Choice. https:
//www.thc.org/thc—ssl-dos.

[23] Voigt, T.; Tewari, R.; Freimuth, D.; and Mehra, A. 2001.
Kernel mechanisms for service differentiation in over-
loaded web servers. In Proceedings of the General Track:
2001 USENIX Annual Technical Conference, 189-202.

[24] More Than 162,000 WordPress Sites Used for Dis-
tributed Denial of Service Attack. In Sucuri Blog.
https://blog.sucuri.net/2014/03/more—
than-162000-wordpress—sites—used-
for-distributed-denial-of-service-
attack.html.

http://www.colm.net/open-source/ragel/
http://www.colm.net/open-source/ragel/
http://www.seastar-project.org/http-performance/
http://www.seastar-project.org/http-performance/
http://www.seastar-project.org/
http://www.seastar-project.org/
http://ha.ckers.org/slowloris/
http://ha.ckers.org/slowloris/
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf
https://www.thc.org/thc-ssl-dos
https://www.thc.org/thc-ssl-dos
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html
https://blog.sucuri.net/2014/03/more-than-162000-wordpress-sites-used-for-distributed-denial-of-service-attack.html

	Keywords
	HTTPS isn't a Second-class Protocol
	HTTP DDoS Resistance
	Optimizing HTTP Parser
	HTTP-aware String Processing
	Copyings and Syscalls
	Coupling a Firewall with HTTP
	The HTTPS/TCP/IP Stack
	Inter-CPU Sockets Transport
	QoS for Accurate DDoS Mitigation

	Keep the Kernel Small

	Performance

	Discussion

	Availability

