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Abstract

Efforts to offload TLS have resulted in KTLS [19]. KTLS fo-
cuses mostly on zero-copy data transfers and only offloads en-
cryption and decryption and ignores TLS handshakes.
However, TLS handshakes are susceptible to DDoS attacks
which are very effective at depleting resources. To alleviate
this we ported onto the Tempesta FW a user-space TLS library
to the kernel [7]. The TLS library porting took only 1 human
month showing that it is quite easy to move TLS code into the
kernel.
In our work we overcame memory allocation issues and other
performance issues. We optimized the TLS code and merged
the TLS handshakes code of the ported library with Linux
kTLS. This article discusses the performance issues which we
had to solve, the resulting performance improvements for TLS
handshakes which we got in Tempesta FW in comparison,
and compare the results with TLS handshakes with traditional
HTTP accelerators. Further directions in optimization of TLS
handshakes on commodity hardware also will be covered.
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TLS Handshake and DDoS
There is a special type of very efficient application-layer
DDoS attacks - asymmetric DDoS attacks [2], which waste
victim’s resources at much higher rate than attacker’s.

SSL/TLS handshake is a very expensive operation and cre-
ates a DDoS attack vector [18]. While the most time during
the handshake is spent in math operations, the additional con-
text switches and copyings, in the case of using user space
cryptography library, are undesired. As a quick solution, we
ported [7] mbed TLS library [8] to the kernel.

TLS 1.3 [16] reduces number of handshake messages, so
I/O becomes smaller for a server. However, TLS libraries and
HTTPS servers will have to support TLS 1.2 for a long time
to be compatible with old clients. Since TLS 1.2 handshakes
are heavier than for TLS 1.3, it’s likely that TLS DDoS at-
tacks will continue to use TLS 1.2 pretending to be outdated
clients.

TLS libraries performance issues
We measured performance [14] and collected perf profile for
emulation of TLS DDoS attack against Nginx with OpenSSL.
Actual versions was used in tests: Linux kernel 4.16, Nginx
1.15 and OpenSSL 1.1.1-pre8. The thc-tls-dos [15] tool
was used to stress TLS handshake subsystem. The Yandex
Tank [20] tool was used to generate load with valid HTTPS
requests. An Intel Xeon E3-1240 v5 was used to run the web
server and an Intel Xeon E5-1650 v3 and Intel Xeon E5-2670
were used as traffic generators.

In the handshake test a client creates a new connection to
the web server. When a TLS handshake is completed, the
client closes the connection and makes a new connection at-
tempt. Hundreds of such clients are used simultaneously.
This allows to evaluate performance of the target web server
under TLS Handshake DDoS.

Although best practices was used to configure Nginx for
the better performance results [11, 9] a certain step aside is
required to emulate a real-life DDoS attack. We had to dis-
able SSL connections cache and SSL sessions tickets. The
options optimize handshakes with already known clients by
reusing previous parameters (session resumption), so the full
TLS handshake is not performed. The more server resources
are used, the more effective DDoS attack is. It’s not question-
able that attackers are not going to save server resources by
enabling session resumption.

Another disabled option is OCSP stapling. In normal
workflow the option reduces handshake time by eliminating
contact the OCSP by a client to verify the server’s certificate.
Since clients in the tests are high speed benchmark utility,
verification is not required and the only effect is increase of
the handshake message size.

Cipher suites chosen by client and server has a great impact
to the handshake time. Some of them stress server many times
more than a client [18], so we used two with the highest prior-
ity in OpenSSl: ECDHE-RSA-AES256-GCM-SHA384 and
ECDHE-ECDSA-AES256-GCM-SHA384. The only differ-
ence is server authentication algorithm: RSA or ECDSA.
RSA has a longer key (3072 vs 256 for the same security
strength) and it’s more CPU-intensive than ECDA algorithm,
but it’s still popular. Some client still don’t support ECC
arithmetics.

We used prime256v1 (secp256r1) curve for ECDSA cer-
tificate and for ECDHE key exchange. This curve is the most



used across all HTTPS server installations [17] and the most
optimized one according to openssl speed ecdsa results.

Handling TLS handshakes
When TLS handshake is performed, cryptographic operations
for server and client differs. There are two verify operations
on a client side for server’s certificate and the signed ECDHE
key from the server. And there are one signing operation of a
ECDHE key for the server. The both, the client and the server,
have to generate a shared premaster secret and generate a key-
pair. Sign and verify operations have opposite computation
cost, if one is cheap, the late is expensive. Each operation
performance for single core is listed in the table below.

Algorithm sign/s verify/s
rsa 2048 bits 1798.2 61312.4
256 bits ecdsa (nistp256) 19716.6 16009.0

The RSA calculations is cheap for a client and expensive
for a server [18], so a server can be easily brought down with
a few cores of traffic generator. This asymmetry makes RSA
handshake DDoS extremely useful, since RSA certificate is
still provided for the most servers for backwards compabil-
ity with old clients. In this preset the server was capable to
handle only around 4’900 Handshakes/sec.

AES encryption and SHA checksums are not heavily used
on this stage, and efficiently implemented in both OpenSSL
and Linux kernel using Intel’s AVX2 and SHA Extensions,
so overhed is small comparing to key exchange and server
authentication calculations.

While using RSA a web server spends most time (more
than 70%) on big integer arithmetics, large amount of mem-
ory allocations can be noticed. But none of Nginx can be
found in perf top output. Nginx does not implement SSL
handshakes on it’s own, it relies on SSL do handshake() func-
tion. That is why no Nginx functions can be found in the perf
top.

Switching to elliptic curves cryptography allowed to han-
dle around 15’000 Handshakes/sec (around 1’875 hand-
shakes per core). With ECDSA cryptographic calculations
are much cheaper, but the picture is the same: large amount
of memory allocations, no Nginx functions.

9.11% __ecp_nistz256_mul_montx
7.80% _int_malloc
7.03% __ecp_nistz256_sqr_montx
3.54% sha512_block_data_order_avx2
3.05% BN_div
2.43% _int_free
1.89% OPENSSL_cleanse
1.61% malloc_consolidate
1.49% ecp_nistz256_avx2_gather_w7
1.41% malloc
1.24% ecp_nistz256_point_doublex
1.20% ecp_nistz256_ord_sqr_montx
1.01% __ecp_nistz256_sub_fromx
1.00% BN_lshift
0.87% BN_num_bits_word
0.86% bn_correct_top
0.84% BN_CTX_get
0.81% __memset_avx2_unaligned_erms

0.77% free
0.74% __ecp_nistz256_mul_by_2x
0.71% BN_rshift
0.59% BN_uadd
0.59% int_bn_mod_inverse
0.54% __memmove_avx_unaligned_erms
0.53% aesni_ecb_encrypt

Allocations took place not only at receiving or sending
packets, but during most of the steps of SSL do handshake()
function. Additionally OPENSSL cleanse() functions wipes
unused memory to protect sensitive information before re-
leasing the memory. BIO *() operations which controls send-
ing and receiving packets takes 4.6% of time.

The bottle neck of handshakes are cryptographic calcula-
tions and memory allocations. Common technic to speed up
the first is to delegate more calculations to the clients. As
shown above computational cost of ECDSA signing opera-
tion is smaller than for RSA, but verify operation is more ex-
pensive. Thus ECDSA has a better performance. But further
optimisations of cryptographic primitives are required to in-
crease performance. I.e. OpenSSL uses AVX2 instruction set
in Montgomery Multiplication for RSA and for secp256r1
curve computations.

Handling established TLS connections
Once a TLS connection established, performance overhead,
especially for small data files [14], moves to data copies
between Nginx and OpenSSl, OpenSSL and the kernel.
Several data copies are performed during message send-
ing: in ngx ssl send chain() to construct the 16K buffer for
OpenSSL, in do ssl3 write(), and at last the packed is copied
to the kernel space. Around 11.5% of time is spent on that.

Less copies happen when a new request is received, 4.6%
is spent on ngx ssl recv(), but half of that time goes to the
underlying BIO read(), which receives data from the kernel.

Tempesta TLS
Tempesta TLS is a fork of mbed TLS, significantly reworked
to get maximum performance. The focus of Tempesta
FW is mitigation of application layer DDoS attacks, so
Tempesta TLS implements server-side TLS only to provide
efficient TLS offloading for protected web services. X86-
64 is the only supported CPU architecture now (actually,
Tempesta FW requires SSE4.2 and AVX2 due to string algo-
rithms optimizations, so only modern CPUs are supported).

Tempesta FW is built into the Linux TCP/IP stack [7], so
Tempesta TLS is also developed as a Linux kernel module.

While there isn’t much what we can do with a DDoS attack
employing RSA handshakes (there the math has been opti-
mized for years after all), the overhead for I/O, data copies
and memory allocations is still important for ECDSA hand-
shakes. The only opportunity to fight against RSA hand-
shakes DDoS attack is to introduce a rate limit for such kind
of handshakes. At some point, when TLS 1.3 get wider
spreading, we can do the same for legacy TLS 1.2 hand-
shakes.

Surprisingly, recent Linux kernels already have almost all
crypto algorithms required for TLS and KTLS [19] uses the



Linux crypto framework to avoid data copies on (sendfile(2))
and sendmsg(2) system calls. While Tempesta TLS uses sev-
eral KTLS definitions, the two implementations are very dif-
ferent.

KTLS
Normal web sites, like Facebook, have TLS sessions from
their clients resumed, making TLS handshakes less crucial
for the whole site performance. KTLS mostly focus on per-
formance of large data transmission avoiding copies between
user and kernel spaces.

KTLS works in process context on syscalls like send-
file(2) and sendmsg(2) (TCP protocol methods sendmsg and
sendpage are overwritten by UTL (Upper Layer Protocols)
interface in the TLS kernel module), so it uses sleeping
functions (e.g. sk stream wait memory()). In particular,
do tcp sendpages() mentioned above sleeps if there is not
enough space in TCP send buffer of a socket where a TLS
record is going to be sent from.

Meantime, Tempesta FW works fully in softirq context, so
it can not use KTLS directly. Only several definitions are
reused. Some simple functions like writing a TLS header
can be reused as well, while complex data structures, like de-
scribing a TLS context, must be significantly extended to sup-
port bidirectional communications, handshakes and multiple
cipher suites.

The fork of mbed TLS
Mbed TLS is a time-proven relatively small, yet feature full,
and very simple TLS library. The small code base and sim-
plicity makes it a good starting point for custom TLS imple-
mentation.

We significantly reduced size of mbed TLS by:

• Removing portability wrappers to architectures except
x86-64;

• Removing some features in RFC 7525 compliance, in par-
ticular compression, renegotiations, support of old and
deprecated SSLv3, TLSv1.0, and TLSv1.1, weak RC4, and
truncated HMAC;

• Also we removed insecure non-AEAD ciphers using CBC,
CFB, and CTR modes of operation;

• Weak ciphers and hashes, like DES, MD2, MD4, MD5,
and SHA1 are also gone;

• Common reverse proxy also doesn’t require Pre-Shared
Keys and elliptic curve J-PAKE.

Mbed TLS copies data to an internal buffer before encryp-
tion or decryption operation. Moreover, it can block on re-
ceiving data. Since Tempesta FW works in softirq context
as a part of the TCP/IP stack, the I/O model proposed by
mbed TLS doesn’t suite our needs.

Mbed TLS sends each TLS record, including consequent
handshake records, in separated TCP segments, which also
hurts performance [1]. Tempesta TLS places all consequent
handshake records in the same data chunk, so less memory
allocations and egress TCP segments are required.

Targeting the code simplicity, mbed TLS implements most
of crypto algorithms in very simple C code without possible
SIMD optimizations existing in the kernel and OpenSSL.

These design constrains, as well as many unnecessary
memory allocations, made us almost fully rewrite I/O
mbed TLS routines and TLS handshakes code. Almost the
whole crypto code was removed and replace by the calls to
the linux crypto API.

Handshakes state machine
Ingress TLS handshake messages may arrive into the TCP/IP
stack split into several skbs. A user space TLS library copies
the socket data into a buffer for further processing.

Zero-copy for ingress data processing requires to properly
handle a case when an ingress TLS record can be split among
two TCP segments at any point, e.g. at the middle of 2-bytes
data length. To handle the cases we use pushdown automaton,
saving small chunks of the same message field among states,
for ingress TLS handshake message processing. E.g. if a 2
byte field length is split among two skbs, then the first byte is
saved in the automaton temporary memory until the second
byte is read as well.

Handshake server states like ServerHello, ServerCertifi-
cate, ServerKeyExchange, CertificateRequest, and Server-
HelloDone remain separate, but all of them write their data
into the same page fragment and sent to the TCP/IP stack in
the same scatterlist. The page fragment is allocated by the
same memory allocator, pg skb alloc() [7], used for socket
buffers allocation, so there is small memory overhead and the
page fragment can be directly used as skb page fragments.
The TCP/IP stack is responsible for splitting the data, so the
minimal number of TCP segments are sent.

Tempesta TLS implements only server-side TLS, so we de-
fine ingress path as receiving client TLS records, either hand-
shake or application data, and egress path as sending, proba-
bly forwarded from a backend server, data to a client.

Ingress path
Linux crypto framework calls for authenticated encryption
with associated data (AEAD), e.g. crypto aead decrypt(), ac-
cept full encrypted message with final authentication tag, so
we have to collect all ingress skbs in a list before sending
them to crypto layer.

During collection of a message skbs we count number of
contiguous memory chunks in the skbs, so when the whole
message is collected we can allocate a crypto request with
scatterlist in one shot.

Similar to the Linux IPSec implementation and unlike
KTLS, Tempesta TLS performs decryption in-place, passing
the same scatterlist as source and destination operands to
crypto framework.

Egress path
In-place decryption is trivial since decrypted plaintext is
smaller than authenticated ciphertext plus IV and a TLS
header.

In-place encryption is not trivial. When Tempesta FW re-
ceives an HTTP response, always unencrypted since we do



not support TLS client mode so far, it has no idea whether
the message is going to be forwarded to a client through en-
crypted connection or unencrypted HTTP connection. So
having a list of skbs with an HTTP response data we have
to allocate additional skb fragments at the beginning and the
end of the message. It’s worth mentioning that skb itself and
its fragments are frequently allocated with some alignment
overhead, an unused small memory areas. Meantime, the
AEAD encryption and TLS headers require relatively small
additional memory.

TLS encryption is performed on socket buffer (struct
sk buff ) basis. Tempesta FW implements additional API for
extending socket buffers with paged data [7]. Moreover, if we
need a small adtitional data for a socket buffer, the API scans
all current page fragments for available memory overhead -
if it’s found, then it’s used for the additional page fragment.
So we use the same technique as for zero-copy HTTP head-
ers modifications [7]: lookup for a free memory areas among
skb fragments and set fragment pointers to them to store TLS
header and AEAD tag.

Servicing an HTTP client request from the web cache is
trivial since we create necessary socket buffers from scratch
instead of forwarding existing skbs from the backend server.
In this case, we just allocate a socket buffer with additional
space required for TLS header and tag.

Dynamic TLS records
In opposite to TCP operating with streams, TLS works with
records, so TLS libraries and web servers using the libraries
have to choose a size for TLS records. A receive side doesn’t
start to process a TLS record until it’s fully read from a
socket. Too small record size causes too much overhead.
On the other side too large record size can lead to significant
delays on receive side if current TCP congestion and/or the
receiver’s advertised window are smaller than a TLS record
size [4].

Some of web servers (e.g. Nginx) statically define the
record size in configuration file (16KB by default for Ng-
inx [10]) while the others (e.g. H2O [5], ATS [13], or Ng-
inx patched by CloudFlare [3]) define policies (also in a
server configuration) to dynamically modify the buffer size.
Such configurations can specify particular rules to change the
buffer size or expected TCP parameters used for the buffer
size calculation, but neither of the approaches are aware of
precise values of current TCP congestion and receive win-
dows.

KTLS also works with full 16KB TLS records pushing
them into the TCP/IP stack by do tcp sendpages().

Tempesta FW is built into the Linux TCP/IP stack, so it
precisely knows current TCP congestion and send windows
and even current MSS. We introduced a new socket hook
sk write xmit() which is called from tcp write xmit() and pe-
forms actual data encryption for data maximum allowed by
the TCP windows minus required TLS overhead.

Unfortunately, we have no control how large socket buffers
are queued in a TCP send queue of a socket, so to build TLS
records of optimal size, we have to process several skbs to
build a single TLS record if the queued skbs are too small.
To do so we pass to our hook the limit for current maximum

data transmission calculated in tcp write xmit(). Having the
limit we can process following skbs in the send queue and
add them to encryption scatterlist which will be used to build
a TLS record. Once being encrypted skbs are flagged, so
tcp write xmit() won’t call the hook when it processes them.

memcpy(), memset(), and the kernel
Crypto libraries extensively use memset() to zeroize mem-
ory regions used for security-sensitive data, e.g. key mate-
rial. While Tempesta TLS are designed in zero-copy fashion,
memcpy() calls still happens , mostly to build a TLS record
from internally stored configuration data and generated dur-
ing handshake.

Since most of the kernel code can not use FPU and FPU
context saving and restoring is expensive operation, the func-
tions are implemented without SIMD processor extensions
with obvious impact on performance.

Meantime, most of Tempesta FW code works in softirq and
we store FPU context when we enter softirq and restore it
when we leave softirq [7]. We made this for fast SIMD HTTP
strings processing, so we made the same to implement vec-
torized versions of memset() and memcpy() [6].

Performance results for the functions are depicted on the
figures 1 and 2 at the below.
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Figure 1: Comparison of kernel memcpy() and the optimized
SIMD version

Discussion
Current version of the code is still in early prototype state.
We’ll publish results of performance measurements in several
days.

Excluded from the library
TLS RSA WITH AES 128 CBC SHA is required by
RFC 5246 [12], but it’s not recommended to use and also
isn’t supported by TLS 1.3 [16]. It seems most of the modern
implementations use GCM mode and exclusion of the cipher
suite won’t hurt any real setups.

Mbed TLS source code isn’t fully adopted and a lot of code
cleanups are still to be done. There are still no TLS 1.3 and
OCSP stapling implementations and these features are also in
our to do list.
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Figure 2: Comparison of kernel memset() and the optimized
SIMD version

Big numbers arithmetic used in TLS handshakes remains
the serious bottleneck. CPU can handle only modest number
of handshakes per second, so at some rate it has sense to of-
fload big number arithmetic from CPU. These days GPU is
provided by many cloud and dedicated server providers, but
loading data into a GPU memory is a heavy operation and has
sense only for massively parallel computations. However, if
a server experiences significant load, i.e. there are many con-
current requests for TLS handshake, we can offload the com-
putations to GPU. We’re exploring the possibility to use GPU
for the big numbers arithmetic.

Availability
The Tempesta TLS is published under GPLv2 and is avail-
able as a part of Tempesta FW source code at https://
github.com/tempesta-tech/tempesta.
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