Performance study of kernel TLS handshakes

1%t Alexander Krizhanovsky, 2" Ivan Koveshnikov
Tempesta Technologies, Inc.
Seattle, USA
ak @tempesta-tech.com, ik @tempesta-tech.com

Abstract

Tempesta TLS, a part of Tempesta FW, implements TLS hand-
shakes in the Linux kernel and focuses on performance to filter
out application layer DDoS attacks. We started development
from the fork of mbed TLS library, but it took significant ef-
fort to make it fast, so we ended up with full reworking of the
library. The design of Tempesta TLS was discussed in our pre-
vious work [17].

The main focus of this paper is to explore how much perfor-
mance we can get for TLS handshake itself and the whole ap-
plication, on example of HTTPS server, by moving TLS hand-
shake into the kernel space. While performance optimization
of the TLS handshakes mathematics is still in progress, we
observed that Tempesta TLS can establish 40-80% more TLS
connections per second than OpenSSL/Nginx and provide up
to x4 lower latency in some tests.

In this paper we study software optimizations of server-side
full TLS 1.2 handshakes using ECDHE and ECDSA on the
NIST P-256 curve as well as abbreviated TLS 1.2 handshakes.
We conclude the paper with the architecture and the user space
API proposals for the Linux kernel upstream.

Keywords

TLS, Linux kernel, fast computations on elliptic curves

User space TLS handshakes

TLS handshake is one of the slowest part of an HTTPS trans-
action on a web accelerator or a load balancer. TLS 1.2 ses-
sion resumption and 0-rtt mode of TLS 1.3 solve the problem
for returning users, but new users still cause significant load
onto a server. Moreover, some modes, e.g2. RSA handshakes
or TLS 1.2 session resumption, require move intensive com-
putations on the server side than on the client side. These two
factors make TLS handshakes an attractive target for asym-
metric application level DDoS attacks [17].

Tempesta FW [18] is an open source hybrid of a web ac-
celerator and an application level firewall embedded into the
Linux TCP/IP stack to reach maximum performance and flex-
ibility. The main target for Tempesta FW is to provide an
open source alternative to proprietary solutions like F5 BIG-
IP and cloud based software stacks like CloudFlare. Such
solutions must efficiently process massive legitimate traffic
as well as to filter out various DDoS and web attacks.

Tempesta TLS [17] is a high performance TLS implemen-
tation and is the part of Tempesta FW project. Tempesta TLS
is a Linux kernel module and at the moment is tightly coupled
with the main Tempesta FW module. However, in this paper
we discuss required changes of the module to include it into
the main Linux kernel tree.

In this work we evaluate how much performance we can
get by moving TLS handshake into the kernel space. While
our development work is still in progress we see that Tem-
pesta TLS establish 40-80% more TLS connections per sec-
ond in comparison with OpenSSL/Nginx. We also cover the
modern research and CPU technologies, which are still not
employed in TLS libraries such as OpenSSL or WolfSSL, but
can significantly improve TLS handshakes performance.

Besides higher performance, the kernel TLS handshake
implementation allows to separate the management of private
keys and certificates from a web accelerator working process.
In this scheme the worker process doesn’t have access to the
security sensitive data stored in the kernel space. A sepa-
rate, privileged, process can be introduced to load and man-
age TLS keys and certificates in the Linux kernel. This is a
best practice for large secure web clusters [8], but it is still un-
available for small installations without loss of performance.

KPTI impact on performance

KPTT (Kernel Page Table Isolation) is a mitigation technol-
ogy against recent Meltdown [27] vulnerability. Two sets of
address space page tables are maintained in the kernel. One
is "full” and contains both the kernel and the user space ad-
dresses. The other contains user space addresses and only the
minimal set of kernel-space mappings. Every syscall or in-
terrupt switches the minimal user space page table to “full”
kernel copy and switches them back on returning to the user
space [16]. This causes a notable overhead for syscall-heavy
and interrupt-heavy workloads [22, 30].

An in-kernel TLS handshake implementation does not
need to switch between the kernel and user spaces, so KPTI
is not involved. Our goal was to see how performance of a
user-space HTTPS server suffers from KPTI.

We expected to see high KPTI impact on the performance
due to many network I/O system calls and a lot of memory
allocations. But our measurements showed less than 4% per-
formance drop on system with security mitigations enabled.

TLS | w/o KPTI | w/ KPTI Delta
1.2 8735 8401 | -3.82%
1.3 7734 7473 | -3.37%

TLS handshake involves not so many network I/O system
calls, so the performance impact was not very high. All the
hottest functions are related to cryptographic operations and
memory allocations. Network I/O is not very high. Glibc
caches memory allocations to reduce the number of system
calls. Thus, the overall kernel overhead was not high enough
to cause a severe performance gap. Web server functions are
also not noticeable in the perf report since no HTTP message
exchange happens in this scenario. At the below is CPU util-
isation by the hottest functions.

Functions
liberypto.so:
__ecp-nistz256_mul_montx,
__ecp-nistz256_sqr_montx,
sha256_block_data_order_avx2,
ecp-nistz256_avx2_gather_-w7,
OPENSSL _cleanse,
ecp-nistz256_ord_sqr_montx,
ecp-nistz256_point_doublex,
__ecp-nistz256_sub_fromx,
__ecp-nistz256_mul_by_2x,
ecp-nistz256_point_addx,
ecp-nistz256_point_add_affinex,
aesni_ecb_encrypt,
BN_num_bits_word,
EVP_MD_CTX _reset
libc.so: _int_malloc, _int_free,
malloc, malloc_consolidate, cfree,
__memmove_avx_unaligned_erms,
__memset_avx2_unaligned_erms
kernel: do_syscall_64, en-
try_SYSCALL_64, pre-
pare_exit_to_usermode,
syscall_return_via_sysret,
mon_interrupt
nginx: - 0%
Since performance drop for the user-space HTTPS server
is not high in this scenario, user-space HTTPS server can not
benefit a lot by disabling KPTT.

Overhead
30.7%

13.2%

4.5%

com-

SRBDS impact on performance

Mitigation against the special register buffer data sampling
(SRBDS) attack [12] can be applied only as a microcode up-
date. The mitigation affects RDRAND processor operation
performance which is used in the handshake processing. Per-
formance impact is higher for TLS 1.3 protocol, telling that
RDRAND operation is used in TLS 1.3 more frequently than
in TLS 1.2.

The kernel and TLS versions impact on
performance

As Tempesta TLS was initially based on Linux kernel 4.14
and will be ported on the next LTS release after Linux 5.7,
we also compared TLS handshake performance on that ker-
nel versions. All mitigations available in both kernels was
switched on.

Kernel | Handshakes/s | 95P Latency, ms
TLS 1.2 New sessions
4.14 7’624 498
5.7 7’284 466
-4.5% -6.4%
TLS 1.2 Session Resumption
4.14 19’203 246
5.7 17°452 112
-9% -54%
TLS 1.3 New sessions
4.14 7’147 315
5.7 6’811 466
-4.7% +47%
TLS 1.3 Session Resumption
4.14 6’472 287
5.7 6’183 342
-4.4% +19%

TLS | w/o SRBDS | w/ SRBDS Delta
1.2 8735 8281 -5.20%
1.3 7734 6’605 | -14.60%

Both the user-space and kernel-space TLS handshakes suf-
fer from SRBDS mitigation, unlike KPTI there is no possibil-
ity to avoid extra overhead by moving code to the kernel.

The 5.7 kernel in all tests makes 4.5-9% less handshakes
in second than the 4.14 kernel. It’s also interesting that the
latency on TLS 1.2 is significantly lower on 5.7 kernel while
TLS 1.3 shows the opposite picture.

As only handshake performance is evaluated, no applica-
tion data is sent and RTT between our servers is too small for
real life scenario, TLS 1.3 can’t benefit from 0-RTT capabil-
ity in this test. Moreover, TLS 1.3 handshake performance
is always lower than TLS 1.2 for 7% in our tests. This hap-
pens because TLS 1.3 performs more encryption/decryption
and hashing operations. Also TLS 1.3 doesn’t show signifi-
cant performance boost on session resumption, instead it even
loses 9%. Unlike in TLS 1.2, the master key is not directly
reused in TLS 1.3, instead a unique shared secret is generated
and combined with the master key [35]. This performance
trade-off allows forward secrecy and saves TLS 1.3 connec-
tion from the master key compromission.

FPU state manipulations

The Linux kernel provides kTLS [34] acceleration of TLS
AES-GCM encryption and decryption: now sendfile() can
transfer encrypted TLS payload without going to the user
space for encryption. The implementation uses x86-64 CPU
extensions involving the FPU, which is responsible for SIMD
CPU extensions and which is usually unavailable for the
Linux kernel code. To use the extensions the FPU state must
be saved with kernel_fpu_begin() function and then restored
with kernel_fpu_end().

The FPU state manipulations aren’t cheap. In our previous
work [17] we evaluated the cost of the FPU manipulations
using a micro-benchmark [19]: copying of 1500 bytes with
the proper FPU state saving and restoring takes x4.78 more
time than the raw copying.

TLS handshake in a full HTTPS transaction

Another subject for the research is how big is the TLS hand-
shake overhead in a short HTTPS transaction. Long living
connections can not benefit from handshake optimisations
since the handshake takes a relatively small part of a commu-
nication process. Short living connections shows the opposite
picture: the handshake overhead is huge enough to dominate
in the communication process.

To prove that an HTTPS transaction performance depends
on handshake processing we compared a server performance
in the scenarios when a client opens and immediately drops a
TLS connection right after a TLS connection was established
(no data transfer), right after a 1KB server response trans-
mission, or right after 10KB server response transmission. In
all the scenarios the client sends HTTP/1.1 request with the
usual headers set for popular browsers. Firstly, we used unen-
crypted HTTP connections, then HTTPS. In order to reduce
HTTP-related processing and evaluate only TLS handshake
overhead, the server was configured to serve from the web
cache.

Handshakes/s | Resp 1Kb/s [Resp 10Kb/s
Plain HTTP
N/A]| 777109 | 55’060
HTTPS with TLS 1.2 (new sessions)
7°225 \ 6’402 \ 6’238
HTTPS with TLS 1.2 (session resumption)
17°274] 13472 | 12°630

The TLS handshake overhead is high enough to reduce per-
formance on encrypted short living connections by x12 for
1KB responses, and by x8.5 for 10KB responses. TLS ses-
sion resumption reduces the difference by x2, but the hand-
shake still costs a lot. While in unencrypted HTTP connec-
tions increasing of a response size lowers RPS by 28%, the
effect is much less on TLS connections: 2.5% for the full
handshake and 6,25% for the abbreviated one.

Compare the kernel- and user-space TLS
handshakes

To compare in-kernel and user-space TLS handshakes perfor-
mance it is required to benchmark basic cryptographic oper-
ations first. For elliptic cryptography they are ECDSA, Ellip-
tic Curve Digital Signature Algorithm, and ECDHE, Elliptic-
curve DiffieHellman key agreement protocol.

ECDSA, op/s | ECDHE, op/s
OpenSSL 1.1.1d 36’472 16’619
WolfSSL* 41°527 55548
Tempesta TLS** 27°261 6’690

* - before the non constant-time fixed point multi-

plication was fixed [37].

** - including ephemeral keys generation.
In the benchmarks OpenSSL and WolfSSL measure
ECDSA signing and ECDHE shared secret generation only.
Meantime, for Tempesta TLS we measure the full operations,
including the ephemeral keys generation, which for ECDHE
involves an additional point multiplication, the slowest opera-
tion. However, despite multiple optimisations in crypto layer
(described in sections below) and heavier computations in the
benchmark, we still get lower performance than OpenSSL

and WolfSSL. We reference WolfSSL here since we borrow
some code from this library as well.

RPS Latency, ms

Avg | 95P | Max
1 CPU VM: TLS 1.2 New sessions

Nginx/OpenSSL | 1°545 | 1340 1643 2154
Tempesta FW 2’180 307 757 2941
+41% | -77% -53% +36%

2 CPU bare-metal: TLS 1.2 New sessions
Nginx/OpenSSL | 7°426 418 467 12681
Tempesta FW 7°921 622 1280 3460
+6% | +48% | +170% -72%

2 CPU bare-metal: TLS 1.2 Session resumption

Nginx/OpenSSL | 19°203 74 246 925
Tempesta FW 35°263 77 268 28262
+83% | +4% +9% | +3000%

In-kernel handshakes allow to serve more requests per sec-
ond in all test cases. While we saw 40-80% performance
improvement for the benchmarks in a virtual environment
and session resumptions on bare-metal, we observed only 6%
performance improvement for new TLS sessions in a bare-
metal environment. We believe that Tempesta TLS shows 6%
only performance improvement for the bare-metal case due
to slower cryptography routines. During the tests we had no
hardware with virtual APIC support and the TLS benchmarks
produce many small network packets, which are the known
problem [14] for the current virtualization solutions.

In the virtual environment the average and 95 percentile
latencies are 50-70% lower for in-kernel handshakes. Situa-
tion is opposite in bare-metal environment: Nginx/OpenSSL
always delivers lower average and 95 percentile latency, 50-
170% lower for new sessions and only 4-9% for session re-
sumption.

In some test we observer huge values of tail latency for the
in-kernel TLS handshakes, up to 3000% larger values in the
worst case. These tail latency spikes are the other side of the
coin with Tempesta TLS processing in SoftIRQ: in the vir-
tual environment there are less number of VM-exit events for
Tempesta TLS, so we see the better performance, but we may
drop more packets under heavy load on bare-metal setups.
We investigate the possible ways to fix the problem [24].

Performance tools and environments

In our performance evaluation of TLS handshakes we used 2
benchmark tools and 2 different environments.

The baseline

Nginx 1.19.1 and OpenSSL 1.1.1d were used as the reference
for our evaluations. Tempesta FW is a reverse proxy, so we
focused on server side performance. In TLS handshakes el-
liptic curves significantly outperform RSA on the server side,
so we chose to concentrate on elliptic curves only. RSA and
NIST curves p256, p384, and p521 are the only allowed for
CA certificates [4]. NIST curves p384 and p521 seem not
used widely: p384 is not optimized in OpenSSL at all and
pS521 is even not recommended by IANA [11]. Thus, NIST
secp256r1 used in the study.

The most recent stable kernel version was used - 5.7. In
the most tests all security mitigations were applied (includ-
ing microcode updates). The only exception is the tests for
mitigations performance evaluation, where mitigations were
disabled by mitigations=off kernel parameter and microcode
updates were disabled as well.

Benchmarking tools

To evaluate the raw speed on TLS handshakes without extra
logic, we used tls-perf [33] tool, which just establishes and
immediately drops many TLS connections in parallel. The
tool can establish full or abbreviated TLS 1.2 or 1.3 hand-
shakes. Different ciphersuites can be specified for the tests.
This is a regular multi-threading program using epoll for net-
work I/O and OpenSSL for all the cryptographic logic.

We used wrk [38] to evaluate performance of full HTTPS
transactions, involving full or abbreviated TLS handshake,
one HTTP request, and one response.

SUT configurations

We used 2 environments for the system under test. The first
one is a 1 vCPU KVM virtual machine running on a host
system with Intel Core 17-6500U CPU (no vAPIC). virtio_net
network driver was used. The virtual machine ran Tempesta
FW or Nginx/OpenSSL, while the benchmarking tools were
ran from the host system.

The second SUT environment is 2 bare-metal servers with
Intel Xeon CPU E3-1240v5 CPUs and Mellanox ConnectX-
2 Ethernet 10Gbps network adapters. The average round trip
time between the servers is 0.06ms.

We used following sysctl settings in all the performance
tests to avoid TCP connections hash table pollution with
TIME-WAIT connections:

net.ipvéd.tcp_max_tw_buckets=32
net.ipvé4.tcp_max_orphans=32
net.ipvé.tcp_tw_reuse=1
net.ipvéd.tcp_fin_timeout=1

Plus to these settings, Tempesta FW also sets

net.core.netdev_max_backlog=10000
net.core.somaxconn=131072
net.ipvéd.tcp_max_syn_backlog=131072

Since load distribution in TLS handshake is not equal and
the client needs more computations than the server, we had
to disable some server CPU cores to stress the server. We
limited CPUs only to first physical core (2 hyperthreads). We
switched off the rest of the CPUs to avoid side effects onto
the performance results.

cd /sys/devices/system/cpu/

for cpu in cpul[2-7]*/online; do
echo 0 >"S$Scpu"

done

The fork of mbed TLS

Originally, Tempesta TLS was forked from GPLv2 version
of mbed TLS 2.8.0 [18, 17]. However, it was significantly re-
worked to make the code fast and at the moment only PKI

code is left from the original mbed TLS code. The main
changes are:

e Zero-copy 1/O [17];

e Awareness of the current TCP congestion and send win-
dows [17];

e Using Linux native crypto API for symmetric ciphers and
hashes [17];

e Memory allocations and MPI overheads were removed
from the hot paths.

The first three points were addressed in our previous
work [17].

While not all possible performance optimizations are fin-
ished yet, we have improved performance of the original
mbed TLS code for 40 times. The table at the below shows
tls-perf [33] average results for the original port of mbed
TLS [18] and the current Tempesta TLS code. The both im-
plementations were run in a single CPU VM.

Implementation | handshakes/s | latency (ms)
mbed TLS 51 2’566
Tempesta TLS 2180 307

Cryptographic routines

The previous sections showed that while the raw performance
of the Tempesta TLS cryptographic routines is still lower than
for OpneSSL, Tempesta FW can establish more TLS connec-
tions per second than Nginx with OpenSSL. The reasons for
the better performance of the whole TLS handshake are:

e no memory allocations in run time;
e no user/kernel spaces context switches;

e more efficient network I/O without copies and extra queue-
ing [171;

e zero-copy TLS handshake state machine [17].
This section describes the performance improvements in

the Tempesta TLS cryptography and discusses the further
work directions.

The big integers overhead

After the mbed TLS code integration with the Linux TCP/IP
stack and the main Tempesta FW module [17], we came to
the following profile for TLS handshakes:

12.12% memset_erms
10.69% ecp_mod_p256
7.10% _ _kmalloc

5.58% kfree

5.08% memcpy_erms
4.99% mpi_mul_hlp
4.48% ttls_mpi_copy
4.44% ttls_mpi_cmp_abs
3.91% ttls_mpi_sub_abs
3.68% ttls_mpi_cmp_mpi
3.25% mpi_sub_hlp
2.71% ttls_mpi_free
2.62% ttls_mpi_shift_r
2.55% ttls_mpi_mul_mpi

2.52% ___ cache_free

1.81% ttls_mpi_bitlen
1.69% ttls_mpi_grow.part.0
1.21% ttls_mpi_shift_1
0.88% ttls_mpi_add_abs
0.88% ecp_modp

0.83% ttls_mpi_lset

The memset_erms() function zeroes the security sensitive
data. This call was easily optimized by using AVX2 version
of memset() function [17] and calling it only once at the end
of a full cryptographic operation.

The functions with prefix ttls_mpi_ are big integer wrap-
pers, inherited from mbed TLS. For the NIST P-256 elliptic
curve and a 64-bit machine a big integer is an array of 4 long
integers (in other words, 4 limbs). In a simple case, a big
integer wrapper can be defined as

typedef struct {

short sign;
unsigned short limbs;
unsigned short wused;
unsigned long ~data;

} BigInteger;

The wrapper handles the sign of the big integer, the total num-
ber of allocated limbs, number of currently used limbs, and a
pointer to the actual data storing the big integer.

However, since mbed TLS uses the same big integer ab-
straction layer for other algorithms using much bigger inte-
gers, the layer employs a lot of conditional statements and,
more importantly, implicit memory allocations. For exam-
ple, if two 4-limb big integers X and Y are multiplied and the
result is stored in X, then X can be reallocated by the mul-
tiplication function to store the 8-limb result. Also in this
example the multiplication is performed in two nested loops,
while exact number of iterations for each loop is known on
compile time and could be efficiently unrolled.

OpenSSL [28] and WolfSSL [36] libraries use specialized
implementations of all elliptic curves routines. Just moving
from the generic big integers implementation to the special-
ized routines improved ECDSA signing time for 12% and
ECDHE key pair and the shared secret generation times for
19% in total.

The calls __kmalloc(), kfree(), and __cache_free() are re-
sponsible for implicit dynamic memory allocations on the big
integers layer. Mbed TLS allocates temporary big integers
also from the heap, which requires memory zeroing on each
freeing. This prevents exposing of a security sensitive data
if the system allocator returns the freed memory chunk in a
subsequent allocation as is.

Tempesta TLS allocates all temporary big integers on stack
as plain arrays of 64-bit integers, without big integer wrap-
pers. All long-living big integers are allocated at once at be-
gin of the TLS handshake process. There are no memory
allocations among the top 30 hottest functions of the current
Tempesta TLS profile.

Side channel attacks restrictions

As [29] we also focus on server side software which is phys-
ically not accessible to an attacker, so resistance of the cryp-

tographic computations against power analysis attacks is out
of the scope of our work.

Mbed TLS [26] randomizes projective coordinates [5], em-
ploys odd-only comb method [7] and constant time computa-
tions, not everywhere though. Non-constant time algorithms,
e.g. modular inversion, are coupled with randomization. Nei-
ther OpenSSL [28] nor WolfSSL [36] use randomization, in-
stead the libraries use constant time computations in all se-
curity crucial places [10]. (WolfSSL team has fixed non-
constant time elliptic curve fixed point multiplication after
our report [37].)

At the moment Tempesta TLS uses the same mix of con-
stant time and non-constant time algorithms with randomiza-
tion as mbed TLS. However, we consider to replace the con-
stant time comb method for point multiplications with the re-
cent non-constant time algorithms (e.g. [6] or [29]) coupled
with randomization to achieve better performance.

Randomization

Constant time algorithms are expensive. For example, the
elliptic curve fixed point multiplication in OpenSSL and
WolfSSL must scan the 150KB precomputed table for 36
times [10].

RDRAND CPU instruction provides very fast random
number generator, so in our case we can replace the full ta-
ble scans with a point randomization, which implies much
lower overhead: a random number generation, 1 squaring,
and 1 multiplication. Moreover, with the approach we can
use a much larger precomputed table to get even better per-
formance.

Unfortunately, the mitigation of the recent SRBDS vulner-
ability [12] leaves only 3% of the original performance of the
RDRAND instruction [23]. Hopefully, the newest Ice Lake
Intel CPUs family fixes the SRBDS vulnerability [13].

Since Tempesta TLS extensively uses randomization, the
Tempesta FW system prerequisites require the newest CPUs
not affected by SRBDS. These requirements significantly
limits the system applicability, so we plan introduce to two
versions of the code: one extensively using randomization for
newer CPUs and the second mbed TLS-like approach mix-
ing randomization with constant time algorithms for legacy
hardware. A new Linux kernel configuration variable should
control which version of the code is compiled.

Point multiplication

The original mbed TLS code uses the Lim and Lee [25]
method to multiply a scalar by a fixed and unknown elliptic
curve points. The only difference between multiplication for
fixed and unknown points is in the size of the precomputed
tables.

We wrote a designated function for the fixed point multipli-
cation. The precomputed table is built on compile time. We
use the comb window size 7, which for 256-bits NIST P-256
curve leads to [256/7] = 37 iteration in the main loop. To
avoid point doublings in the main loop completely we pre-
compute 37 tables. This leads us to the very similar algo-
rithm and the precomputed table as used by OpenSSL [10]
and WolfSSL [36].

The whole size of the all precomputed tables is about
152KB, which significantly larger than L1d cache size on the
modern CPUs. Since a secret value is used to access the tables
in all the ECDSA and ECDHE computations, cache misses
caused by direct accessing the tables may lead to revealing
bits of the secret value. To prevent the side channel attack,
OpenSSL [10] scans the table on each iteration of the point
multiplication loop, 36 times in total. WolfSSL also recently
replaced direct access of the table with full scan [37]. The
WolfSSL developers reported 5-17% performance degrada-
tion introduced by the change.

Instead of scanning the whole precomputed tables, we mul-
tiply the secret value by a random number before the point
multiplication loop and use direct access to the tables. Since
the scalar is randomized, the different access time doesn’t ex-
pose bits of the secret value. We use RDRAND (with prereq-
uisites of modern CPUs not affected by SRBDS) to quickly
generate random numbers for the multiplication.

It seems the Lim and Lee [25] algorithm with multiple
precomputed tables is still one of the most efficient algo-
rithms for fixed point multiplication. The algorithm was used
with maximum number of precomputed tables, such that only
point additions are required and there are no point doubling
in the main loop. We use mixed point addition formula with
8M + 35S = 10.4M complexity (expressed in required num-
ber of scalar multiplications M and squarings .S having that
squaring takes 0.8 of time of multiplication as in [29]), i.e.
the whole point multiplication costs 10.4M * 36 = 374.4M
using 152KB of storage.

We compared the Lim and Lee multi-table method with the
recent research by Robert et al [29], which proposes the novel
R-prime algorithm. It’s not stated explicitly in their paper,
but we believe the single table variation of the Lim and Lee
algorithm was used in all their comparisons. We evaluated
the required memory size and computation cost (in number
of required multiplications) for several Lim and Lee window
values and maximum number of tables:

w size | multiplications | storage (KB)
6 452 87
8 342 263
10 275 848
11 251 1548
13 214 5278
15 187 18432

We compared the numbers with the results for R-prime (ta-
ble XI for NIST curve P-256 [29]) using the Figure 1.

The figure shows that the smallest table sizes, including our
152KB table, and the largest table sizes are more efficient for
R-prime, but 1548KB table size is bit more efficient for the
multi-table comb. However, it’s more efficient to use Lim and
Lee method with bigger window and smaller number of tables
in case of memory constrains. In the Robert et al [29] com-
parisons of R-prime with single-table Lim and Lee, Lim and
Lee is more efficient on small storage sizes. Thus, R-prime
should be used only with the table sizes larger than 1548KB,
all lower table sizes are better handled by multi-table Lim and
Lee. Both the algorithms work in constant time, but Robert et
al [29] also introduce the non-constant time mOm1 algorithm,
which is faster than R-prime.

multitable comb —+—
450 N R-prime —— 4
400 -
2
S 3501
<
L2
=
= 300
£
250 -
200 -
100 1000 10000
table size (KB)
Figure 1: Comparison of R-prime and multi-table comb
methods

Unknown point multiplication must pre-compute all values
in the run time, so the tables must be small. Thus, Lim and
Lee remain the best choice for unknown point multiplication.

From the other side, the fixed point multiplication, having
fast random generator, can benefit from large precomputed
tables. Using constant-time algorithms with full table scan
makes sense only for architectures having no fast or secure
random number generator. We’re going to evaluate mOml
and one more non-constant time point multiplication algo-
rithm proposed by Mohamed et al [6], with different sizes of
precomputed tables.

Modular inversion

Tempesta TLS, mbed TLS, OpenSSL, and WolfSSL use Ja-
cobian coordinates, so a modular inversion is used to convert
coordinates from Affine to Jacobian and back. The modular
inversion is the second most hot spot after the point multipli-
cation [10]. OpenSSL and WolfSSL use SIMD implementa-
tions of the algorithm based on the Fermat’s little theorem,
i.e. using 255 modular squarings and 13 modular multiplica-
tions [10]. While the Fermat’s little theorem method is com-
putationally heavy, it works in constant time.

The original mbed TLS code for the modular inversion uses
non-constant time algorithm, so the implementation must use
multiplication by a random number to blind a secret value.

Bernstein and Yang recently proposed a constant time
modular inversion algorithm [2], significantly faster than the
Fermat’s method. As Tempesta TLS inherits the randomiza-
tion for the secret value, we can use non-constant time algo-
rithm for modular inversion. The original Bernstein and Yang
algorithm always executes 741 division steps to inverse a 256-
bit integer. In our version the algorithm executes 560 itera-
tions in average and also saves several big integer operations
at the end of the algorithm. With moving to the new modular
inversion algorithm we improved performance of ECDSA for
56% and ECDHE for 18%. The modular inversion algorithm
currently still uses big integers and can be optimized further
by moving to specialized assembly routines.

Modular reduction

At the moment modular multiplication and squaring domi-
nate in all the computations (18% and 11% of the whole TLS
handshake computations correspondingly). Both the opera-
tions are merged with modular reduction using FIPS 186-
4 D.2 algorithm. We inherited the FIPS modular reduction
method from the original mbed TLS implementation. Several
optimization strategies were applied to the algorithm, includ-
ing the final table-based subtractions and additions proposed
by Bos [3]. After all the optimization the most performance
profiling samples hit the modular reduction part of the multi-
plication and squaring functions. Moreover, the ratio between
the execution time of both the functions is 0.9, which is sig-
nificantly more than usual [0.8, 0.86] ratio for the implemen-
tations using Montgomery reduction. OpenSSL and Wolf-
SSL use Montgomery reduction and we believe that moving
to Montgomery reduction will significantly improve perfor-
mance of modular arithmetics.

TLS handshakes for the Linux kernel

We propose the kernel TLS handshakes for the inclusion into
the main line of the Linux kernel. Current Tempesta TLS
implementation takes into account only requirements for ap-
plication delivery controllers, but the generic implementation
must take care about wider range of use cases. The state of the
proposal and the implementation discussions can be found in
the corresponding task on GitHub [21].

The Linux kTLS [20] implements only TLS data transfer
part using symmetric cryptography. TLS handshakes were
not considered to be a part of kernel and are processed in
the user space. A user-space application must open a TCP
connection, complete a TLS handshake over it, and at the end
the socket can be configured for kTLS by addition of a session
key via setsockopt() system call. When these prerequisites
are done, the application can use send()/receive()/sendfile()
to send and receive data buffers or use sendmsg()/recvmsg()
to send TLS control messages [20].

With this work flow a server application runs the following
set of operations:

1. A TCP handshake is processed in Softlrq context for a new
incoming connection;

2. A new socket descriptor is passed into user-space applica-
tion and a TLS handshake is processed by the application;

3. A setsockopt() system call is used to configure a session
key for the socket.

4. send()/receive() operations over the TLS socket are used as
for usual TCP socket, but the kernel transparently encrypts
and decrypts all passed data.

Limitations

There is no intention to move the whole TLS handshake
implementation into the kernel. For example, the whole
OpenSSL’s code base is big enough and many outdated fea-
tures are supported there. Instead we propose to move to the
kernel only the most beneficial features for now: TLS 1.2 and
1.3 server handshake state machine, including for the abbre-
viated versions, ECDHE and ECDSA implementations over

the NIST P-256 and x2559 elliptic curves. This minimal fea-
tures set limits the size of TLS handshakes code in kernel,
but it also limits acceptable TLS options and supports only
modern clients.

To avoid the restrictions and to support all flavours of TLS
clients we should keep the user-space handshake processing
as a fallback mechanism.

Today Tempesta TLS supports only the modern CPU fam-
ilies of x86-64 architecture to employ AVX, BMI, and ADX
extensions for the maximum performance. There is no
generic C implementation of some cryptographic routines.
However, there are other CPU architectures becoming more
and more wide spread in the cloud and enterprise environ-
ments, e.g. ARM. There are also many Linux installations
with old hardware. The much wider set of CPUs must be
supported in the upstream version of the TLS handshakes.

Architecture overview

Unlike current kTLS implementation, working in a process
context, TLS handshakes should be done in SoftIRQ con-
text, just like TCP handshakes. A separate context performs
TLS handshakes on non-blocking sockets without extra con-
text switches [1] and a user-space application is notified only
once, when a handshake completed. To speedup crypto-
graphic computation, SoftIRQ must acquire FPU context on
getting CPU time and release it on exit. This way, TLS hand-
shakes can be processed in batches, eliminating extra FPU
context switches. The FPU context save/restore operation
was not used in SoftIRQ before and may affect performance
of applications aggressively using FPU registers, which is the
majority of modern applications due to auto-vectorization.
Thus the operations must be enabled only when the kernel
is configured with TLS handshakes.

Heavy cryptographic computations in SoftIRQ may in-
troduce large latencies [24], so designated per-cpu kernel
threads can be a good alternative. Meantime, the work queue
mechanism has too high overheads to be used for TLS hand-
shakes.

The workflow for an application with kernel TLS hand-
shake processing will be changed to:

1. TCP handshake is processed in SoftIRQ context for a new
incoming connection;

2. TLS handshake is started in SoftIRQ for the same connec-
tion

(a) if it succeeds, a new socket descriptor with an estab-
lished TLS session is returned to the user-space appli-
cation as ready to read or write.

(b) otherwise (fallback scenario), if the kernel can not com-
plete the handshake, a new socket descriptor with TCP
connection only established is returned to the user space
and a TLS handshake is fully processed by the applica-
tion.

3. The setsockopt() system call configures a session key for
the socket to enable kTLS.

4. send()/receive() operations over the TLS socket are used as
for current TCP sockets with enabled kKTLS.

The usual requirements for TLS servers also include se-
cret keys and certificates management and possibility to run
different virtual servers over the same listen address. We pro-
pose to use Kernel Key Retention Service [15] to store and
manage keys for every virtual server. The service already
has access management and SELinux support, so it’s possi-
ble to use a privileged process for sensitive data management
while worker process won’t be able to access neither the pri-
vate key nor the session key during servicing remote user con-
nection. But such role management between processes is not
enforced and developers are free to use single process for the
both roles.

Virtual servers on the same listening address are differen-
tiated via Server Name Identifier (SNI) extension, while the
same listening address might be requested by multiple pro-
cesses. SNI of a virtual server in our proposal is a root node
in a keyring [15]. Since it allows access rights management,
different processes and containers can be able to update/re-
voke their certificates and keys, but can’t have access to cer-
tificates and keys of other processes and containers working
on the same host.

Socket API

Before a TLS socket is created, it’s required to load a certifi-
cate and a private key. Kernel Key Retention Service provides
add key(2) system call with asymmetric-key(7) API which
allows to load X509 certificates, including ECDSA keys.
Since the functions request_key() and request_key_rcu(), used
for the key search by asymmetric keys system, can be called
in a process context only, the interface can’t be used to find
a key during the handshake process. Thus, we should use
the setsockopt(2) system call to extract the keys in the pro-
cess context and place them into an alternate storage associ-
ated with the listening socket. The storage must provide non-
sleepable and fast API to be used in SoftIRQ context. The
storage must be keyed by SNI string.

The TLS implementation must register 2 new key_types:
tls_cert for TLS certificates and tls_priv for private keys. A
keyring defines the pair of a certificate and corresponding pri-
vate key for a particular SNIL.

Following code can be used to create a new keyring for SNI
example.com:

key_serial_t my_sni_kr =
add_key ("keyring", "example.com",
NULL, 0, 0);

Loading the certificate and the private key for the SNI can
be done with:

key_serial_t cert =
add_key ("tls_cert", "tlscrt:",
cert_data, cert_len,
my_sni_kr);
key_serial_t priv_key =
add_key ("tls_priv", "tlspk:",
priv_key_data, pk_len,
my_sni_kr);

After the keyring is populated a normal TCP socket is cre-
ated and bound to a listening port:

int sd = socket (AF_INET6, SOCK_STREAM,
0)
bind(sd, ...);
Next, a TLS context is created for the keyring my_sni_kr
and setsockopt(2) is called to setup the TLS context for the
listening socket:

struct tlsl2_crypto_info_aes_gcm_128 ci
= {
.versions =
TLS_1_2_VERSION | TLS_1_3_VERSION,
.tls_12_cipher_suites =
ECDHE_ECDSA_AES128_GCM_SHA256
| ECDHE_ECDSA_AES256_GCM_SHA384,
.tls_13_ciphersuites =
TLS_AES_128_GCM_SHA256
| TLS_AES_256_GCM_SHA384,
.ecurves = secpz2b6rl | x25519,
.tls_keyring = my_sni_kr,
}i
setsockopt (sd, SOL_TCP, TCP_ULP, "tls",
sizeof ("tls"));
setsockopt (sd, SOL_TLS, TLS_HS, &ci,
sizeof (ci));

The TLS handshake happens on a listening socket. Polling
system calls, e.g. epoll(2), poll(2), and select(2), must return
a TLS socket as ready when TLS handshake is completed.
If the kernel implementation lacks some necessary logic to
finish the handshake, but there is no error on the TLS layer,
then accept(2) returns a descriptor for a new TCP connection
socket. The user space application can pass the socket to a
TLS library, which handles the TLS handshake. We introduce
the new protocol family PF_TLS to check the status of the
socket from accept(2) system call without extra getsockopt(2)
calls.

listen(sd, ...);

struct sockaddr_in sa;

int new_sd = accept(listen_fd,
(struct sockaddr «)é&sa,
sizeof (sa));

if (sa.sin_family == PF_TLS) {
/+ Ready to read()/write() =/
} else {
/ *
* Fallback to user—-space handshake.
*/

}

If the kernel fails to establish the TLS handshake, then the
user space application must be able to read ClientHello mes-
sage from the socket descriptor, so that a regular TLS library,
without any changes, can perform a TLS handshake on its
own. It’s guaranteed that the first read operation won’t block
and will contain the full ClientHello message. This also im-
plies that the kernel TLS handshake mechanism can not fall-
back to the user space on later handshake phases.

Now, the socket is ready to read and send data with decryp-
tion and encryption on the kernel layer.

The server can close the socket using normal close(2)
or shutdown(2) system calls. With SHUT_RD shutdown(2)

mode, any read operation from the user space ends with an
error, but the socket is still in reading mode to read TLS alerts
from the peer and properly close the TLS session.

Normally, multiple virtual servers may listen on the same
address, and target virtual host is chosen by SNI value. A sim-
ple function can be used to match SNIs listed in the keyring
one-by-one until a match is found.

Linux kTLS performance issues

The recent work [31] reveals several performance issues with
the current kKTLS [34] implementation, which are also appli-
cable to Tempesta TLS since both the implementations use
the same Linux cryto API. In particular, the work discusses
a possibility to use precomputations for the Karatsuba algo-
rithm. Also the authors mentioned the memory issues with
AES-GCM.

We studied the problem [32] with extra memory allocations
and copyings in the gcmaes_encrypt() Linux crypto API func-
tion. Following perf profile was collected for transmission of
a 19KB web page using kTLS:

11.70% _encrypt_by_8_new8
5.21% scatterwalk_copychunks
2.38% skb_release_data
1.54% get_page_from_freelist
1.47% free_hot_cold_page
1.46% _ _alloc_skb
1.45% _ _kmalloc
1.31% tfw_tls_encrypt

1.26%

The scatterwalk_copychunks() and __kmalloc() calls can be
optimized out.

Linux kTLS works in a process context, so a TLS record
encryption and transmission happen in different contexts and
points in time. The TLS records formed in this way may ex-
ceed the size of currently allowed TCP transmission, leading
to extra delays on TLS decryption on a peer [9].

Tempesta TLS encrypts [17] data in sk_write_xmit() call-
back called by the Linux TCP/IP stack right on transmission
time, when we know precisely how much data we can send.
KTLS may benefit from the same approach, removing unnec-
essary delays, especially at the beginning of a TLS connec-
tion.

aesni_gcm_precomp_avx_gen2

Availability

The Tempesta TLS is published under GPLv2 and is avail-
able as the part of Tempesta FW source code at https:
//github.com/tempesta-tech/tempesta.

References

[1] Benjamin, D. 2020. TLS 1.3 and TCP interac-
tions. In IETF TLS mailing list. https://www.mail—-
archive.com/tls@ietf.org/msgl2569.html.

[2] Bernstein, D. J., and Yang, B.-Y. 2019. Fast constant-
time gcd computation and modular inversion. JACR Trans-
actions on Cryptographic Hardware and Embedded Sys-
tems 340-398.

[3] Bos, J. W. 2010. High-performance modular multiplica-
tion on the cell processor. In Arithmetic of Finite Fields,
7-24. Springer Berlin Heidelberg.

[4] Baseline Requirements Documents (SSL/TLS Server
Certificates), section 6.1.5. https://cabforum.
org/baseline-requirements-documents/.

[5] Coron, J.-S. 1999. Resistance against differential power
analysis for elliptic curve cryptosystems. In CHES.

[6] Farah, N.; Hashim, M.; and Hutter, M. 2012. Im-
proved fixed-base comb method for fast scalar multipli-
cation. 342-359.

[7] Feng, M.; B.Zhu, B.; Xu, M.; and Li, S. 2005. Effi-
cient comb elliptic curve multiplication methods resistant
to power analysis. In JACR Eprint archive.

[8] Graham-Cumming, J. 2017. Incident report on memory
leak caused by Cloudflare parser bug. In The Cloud-
flare Blog. https://blog.cloudflare.com/
incident-report-on-memory-leak—-caused-
by-cloudflare-parser—-bug/.

[9] Grigorik, 1. 2013. Optimize TLS Record
Size. In High Performance Browser Network-
ing. https://hpbn.co/transport-layer—
security-tls/#optimize-tls—-record-size.

[10] Gueron, S., and Krasnov, V. 2014. Fast prime field
elliptic-curve cryptography with 256-bit primes. volume 5,
141-151.

[11] TANA. 2020. Transport Layer Security (TLS) Param-
eters, TLS Supported Groups. https://www.iana.
org/assignments/tls-parameters/tls-
parameters.xml#ftls-parameters-8.

[12] Intel Corporation Developer Zone. Deep
dive: Special register buffer data sampling.
https://software.intel.com/security—
software—guidance/insights/deep-dive-
special-register-buffer-data-sampling.

[13] Intel Corporation Developer Zone. Processors
affected: Special register buffer data sampling.
https://software.intel.com/security-
software—-guidance/insights/processors—
affected-special-register-buffer-data-
sampling.

[14] Jain, A. S.; Duyck, A. H.; Sarangam, P.; and Jani,
N. 2017. Story of Network Virtualization and its future
in Software and Hardware. In Netdev 2.1. https://
netdevconf.info/2.1/session.html?jain.

[15] Kernel key retention service. https://www.
kernel.org/doc/html/latest/security/
keys/core.html.

[16] Page Table Isolation (PTI). https://www.
kernel.org/doc/html/latest/x86/pti.
html.

[17] Krizhanovsky, A., and Koveshnikov, I. 2018. Kernel
TLS handshakes for HTTPS DDoS mitigation. In Net-
dev OxI2. https://netdevconf.info/0x12/

session.html?kernel-tls—-handshakes-
for-https-ddos-mitigation.

[18] Krizhanovsky, A. 2017. Kernel HTTP/TCP/IP
stack for HTTP DDoS mitigation. In Netdev
2.1. https://www.netdevconf.org/2.1/
session.html?krizhanovsky.

[19] Benchmark for the Linux kernel SIMD mem-
ory routines. In Open source benchmarks and
code samples for the Tempesta Technologies
blog. https://github.com/tempesta—-

tech/blog/tree/master/kstrings.

[20] Kernel TLS. https://www.kernel.org/doc/
html/latest/networking/tls.html.

[21] Linux kernel TLS, Tempesta FW project
task. https://github.com/tempesta—-
tech/tempesta/issues/1433.

[22] Larabel, M. 2020a. Looking at the linux perfor-
mance two years after spectre / meltdown mitigations.
https://www.phoronix.com/scan.php?
page=article&item=spectre-meltdown-
2&num=10.

[23] Larabel, M. 2020b. RdRand Performance As Bad
As 3% Original Speed With CrossTalk/SRBDS Mitiga-
tion. https://www.phoronix.com/scan.php?
page=news_item&px=RdRand-3-Percent.

[24] Latency can increase for huge amount of TLS connec-
tions. https://github.com/tempesta-tech/
tempesta/issues/1434.

[25] Lim, C. H., and Lee, P.J. 1994. More flexible exponen-
tiation with precomputation. In Precomputation, Advances
in Cryptology - CRYPTO 94, 95-107.

[26] The mbed TLS project. https://github.com/
ARMmbed/mbedt 1s.

[27] Meltdown and Spectre. Vulnerabilities in modern com-
puters leak passwords and sensitive data. https://
meltdownattack.com/.

[28] OpenSSL TLS/SSL and crypto library. https://
github.com/openssl/openssl.

[29] Robert, J.-M.; Negre, C.; and Plantard, T. 2019. Ef-
ficient fixed-base exponentiation and scalar multiplication
based on a multiplicative splitting exponent recoding. In
Journal of Cryptographic Engineering.

[30] Schwenke, A. 2018. MyISAM and KPTI Per-
formance Implications From The Meltdown Fix.
https://mariadb.org/myisam-table-scan—
performance-kpti/.

[31] Szymanski, P., and Deval, M. 2020. TLS per-
formance characterization on modern x86 CPUs. In
Netdev Ox14. https://netdevconf.info/0x14/
session.html?talk-TLS-performance—
characterization-on-modern-x86—-CPUs.

[32] Tis: further performance improvements and
cleanups. https://github.com/tempesta-
tech/tempesta/issues/1064.

[33] Tls handshakes benchnarking tool. https://
github.com/tempesta-tech/tls—perf.

[34] Watson, D. 2016. Kernel TLS (Trans-
port Layer Security) Socket. In Netdev 1.2.
http://www.netdevconf.org/1l.2/session.
html?dave-watson.

[35] TLS 1.3 Performance Part 1 Resumption.
https://www.wolfssl.com/tls-1-3-
performance-resumption/.

[36] wolfSSL. (formerly CyaSSL) implementation of
TLS/SSL. https://github.com/wol£fSSL/
wolfssl/.

[37] WoIfSSL library. 2020. SP ECC Cache Resitance,
pull request. https://github.com/wolfSSL/
wolfssl/pull/3195.

[38] Modern HTTP benchmarking tool.
github.com/wg/wrk.

https://

